Electromagnetic Multipole Theory for Two-Dimensional Photonics.

Iridanos Loulas, Evangelos Almpanis, Minas Kouroublakis, Kosmas L Tsakmakidis, Carsten Rockstuhl, Grigorios P Zouros
Author Information
  1. Iridanos Loulas: Section of Condensed Matter Physics, National and Kapodistrian University of Athens, Panepistimioupolis, 157 84 Athens, Greece. ORCID
  2. Evangelos Almpanis: Section of Condensed Matter Physics, National and Kapodistrian University of Athens, Panepistimioupolis, 157 84 Athens, Greece.
  3. Minas Kouroublakis: School of Informatics, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece.
  4. Kosmas L Tsakmakidis: Section of Condensed Matter Physics, National and Kapodistrian University of Athens, Panepistimioupolis, 157 84 Athens, Greece. ORCID
  5. Carsten Rockstuhl: Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany.
  6. Grigorios P Zouros: Section of Condensed Matter Physics, National and Kapodistrian University of Athens, Panepistimioupolis, 157 84 Athens, Greece. ORCID

Abstract

We develop a full-wave electromagnetic (EM) theory for calculating the multipole decomposition in two-dimensional (2-D) structures consisting of isolated, arbitrarily shaped, inhomogeneous, anisotropic cylinders or a collection of such. To derive the multipole decomposition, we first solve the scattering problem by expanding the scattered electric field in divergenceless cylindrical vector wave functions (CVWFs) with unknown expansion coefficients that characterize the multipole response. These expansion coefficients are then expressed via contour integrals of the vectorial components of the scattered electric field evaluated via an electric field volume integral equation (EFVIE). The kernels of the EFVIE are the products of the tensorial 2-D Green's function (GF) expansion and the equivalent 2-D volumetric electric and magnetic current densities. We validate the theory using the commercial finite element solver COMSOL Multiphysics. In the validation, we compute the multipole decomposition of the fields scattered from various 2-D structures and compare the results with alternative formulations. Finally, we demonstrate the applicability of the theory to study an emerging photonics application on oligomer-based highly directional switching using active media. This analysis addresses a critical gap in the current literature, where multipole theories exist primarily for three-dimensional (3-D) particles of isotropic materials. Our work enhances the understanding and utilization of the optical properties of 2-D, inhomogeneous, and anisotropic cylindrical structures, contributing to advancements in photonic and meta-optics technologies.

References

  1. Nat Commun. 2023 Nov 8;14(1):7213 [PMID: 37938215]
  2. J Opt Soc Am A Opt Image Sci Vis. 2011 Nov 1;28(11):2376-84 [PMID: 22048305]
  3. Opt Express. 2015 Dec 28;23(26):33044-64 [PMID: 26831974]
  4. Nano Lett. 2014 Jan 8;14(1):166-71 [PMID: 24279805]
  5. Phys Rev Lett. 2022 Nov 11;129(20):203601 [PMID: 36462013]
  6. Phys Rev Lett. 2017 Sep 22;119(12):123902 [PMID: 29341643]
  7. Opt Express. 2018 Mar 19;26(6):7235-7252 [PMID: 29609409]
  8. Nanoscale. 2018 Oct 4;10(38):18282-18290 [PMID: 30246846]
  9. Nano Lett. 2013 Apr 10;13(4):1806-9 [PMID: 23461654]
  10. Nat Commun. 2012;3:1171 [PMID: 23132021]
  11. ACS Photonics. 2022 Feb 16;9(2):672-681 [PMID: 35574206]
  12. Front Optoelectron. 2023 Dec 29;16(1):48 [PMID: 38157127]
  13. Nat Commun. 2013;4:1527 [PMID: 23443555]
  14. Opt Express. 2018 May 14;26(10):13085-13105 [PMID: 29801341]
  15. Science. 2017 Jun 23;356(6344):1260-1264 [PMID: 28642432]

Word Cloud

Created with Highcharts 10.0.0multipole2-DelectrictheorydecompositionstructuresscatteredfieldexpansioninhomogeneousanisotropiccylindricalcoefficientsviaEFVIEcurrentusingdevelopfull-waveelectromagneticEMcalculatingtwo-dimensionalconsistingisolatedarbitrarilyshapedcylinderscollectionderivefirstsolvescatteringproblemexpandingdivergencelessvectorwavefunctionsCVWFsunknowncharacterizeresponseexpressedcontourintegralsvectorialcomponentsevaluatedvolumeintegralequationkernelsproductstensorialGreen'sfunctionGFequivalentvolumetricmagneticdensitiesvalidatecommercialfiniteelementsolverCOMSOLMultiphysicsvalidationcomputefieldsvariouscompareresultsalternativeformulationsFinallydemonstrateapplicabilitystudyemergingphotonicsapplicationoligomer-basedhighlydirectionalswitchingactivemediaanalysisaddressescriticalgapliteraturetheoriesexistprimarilythree-dimensional3-Dparticlesisotropicmaterialsworkenhancesunderstandingutilizationopticalpropertiescontributingadvancementsphotonicmeta-opticstechnologiesElectromagneticMultipoleTheoryTwo-DimensionalPhotonics

Similar Articles

Cited By