Relational similarity-based graph contrastive learning for DTI prediction.

Jilong Bian, Hao Lu, Limin Wei, Yang Li, Guohua Wang
Author Information
  1. Jilong Bian: College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, Heilongjiang, China. ORCID
  2. Hao Lu: College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
  3. Limin Wei: College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, Heilongjiang, China.
  4. Yang Li: College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, Heilongjiang, China. ORCID
  5. Guohua Wang: College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, Heilongjiang, China. ORCID

Abstract

As part of the drug repurposing process, it is imperative to predict the interactions between drugs and target proteins in an accurate and efficient manner. With the introduction of contrastive learning into drug-target prediction, the accuracy of drug repurposing will be further improved. However, a large part of DTI prediction methods based on deep learning either focus only on the structural features of proteins and drugs extracted using GNN or CNN, or focus only on their relational features extracted using heterogeneous graph neural networks on a DTI heterogeneous graph. Since the structural and relational features of proteins and drugs describe their attribute information from different perspectives, their combination can improve DTI prediction performance. We propose a relational similarity-based graph contrastive learning for DTI prediction (RSGCL-DTI), which combines the structural and relational features of drugs and proteins to enhance the accuracy of DTI predictions. In our proposed method, the inter-protein relational features and inter-drug relational features are extracted from the heterogeneous drug-protein interaction network through graph contrastive learning, respectively. The results demonstrate that combining the relational features obtained by graph contrastive learning with the structural ones extracted by D-MPNN and CNN enhances feature representation ability, thereby improving DTI prediction performance. Our proposed RSGCL-DTI outperforms eight SOTA baseline models on the four benchmark datasets, performs well on the imbalanced dataset, and also shows excellent generalization ability on unseen drug-protein pairs.

Keywords

References

  1. PLoS Comput Biol. 2019 Jun 14;15(6):e1007129 [PMID: 31199797]
  2. Bioinformatics. 2015 Jun 15;31(12):i221-9 [PMID: 26072486]
  3. Methods. 2022 Feb;198:19-31 [PMID: 34737033]
  4. Brief Bioinform. 2022 Jul 18;23(4): [PMID: 35817396]
  5. IEEE/ACM Trans Comput Biol Bioinform. 2023 May-Jun;20(3):1943-1952 [PMID: 36445997]
  6. BMC Bioinformatics. 2021 Jul 24;22(1):385 [PMID: 34303360]
  7. Bioinformatics. 2021 Dec 7;37(23):4485-4492 [PMID: 34180970]
  8. Nat Commun. 2017 Sep 18;8(1):573 [PMID: 28924171]
  9. Bioinform Adv. 2023 Aug 16;3(1):vbad110 [PMID: 37701676]
  10. Bioinformatics. 2022 May 13;38(10):2847-2854 [PMID: 35561181]
  11. Brief Bioinform. 2015 Mar;16(2):325-37 [PMID: 24723570]
  12. BMC Bioinformatics. 2023 Aug 26;24(1):323 [PMID: 37633938]
  13. BMC Bioinformatics. 2020 Jul 6;21(Suppl 4):248 [PMID: 32631230]
  14. Nat Rev Drug Discov. 2004 Aug;3(8):673-83 [PMID: 15286734]
  15. IEEE J Biomed Health Inform. 2025 Mar;29(3):1656-1667 [PMID: 38437145]
  16. Adv Neural Inf Process Syst. 2019 Dec;32:9689-9701 [PMID: 33390682]
  17. Bioinformatics. 2022 Apr 28;38(9):2571-2578 [PMID: 35274672]
  18. IEEE J Biomed Health Inform. 2025 Mar;29(3):1602-1612 [PMID: 38457318]
  19. Brief Bioinform. 2023 Mar 19;24(2): [PMID: 36892153]
  20. IEEE J Biomed Health Inform. 2023 Jan;27(1):573-582 [PMID: 36301791]
  21. Bioinformatics. 2022 Jul 11;38(14):3582-3589 [PMID: 35652721]
  22. J Chem Inf Model. 2019 Aug 26;59(8):3370-3388 [PMID: 31361484]
  23. Bioinformatics. 2009 Sep 15;25(18):2397-403 [PMID: 19605421]
  24. Brief Bioinform. 2022 Nov 19;23(6): [PMID: 36274236]
  25. Bioinformatics. 2022 Jan 12;38(3):655-662 [PMID: 34664614]
  26. Bioinformatics. 2008 Jul 1;24(13):i232-40 [PMID: 18586719]
  27. J Med Chem. 2014 Apr 24;57(8):3186-204 [PMID: 24151987]
  28. IEEE/ACM Trans Comput Biol Bioinform. 2022 Jul-Aug;19(4):2208-2218 [PMID: 33956632]
  29. Brief Bioinform. 2024 May 23;25(4): [PMID: 39038932]
  30. Brief Bioinform. 2024 May 23;25(4): [PMID: 38920341]
  31. Brief Bioinform. 2021 Sep 2;22(5): [PMID: 33517357]
  32. J Comput Biol. 2018 Mar;25(3):361-373 [PMID: 28891684]
  33. Brief Bioinform. 2023 Nov 22;25(1): [PMID: 38145949]
  34. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34661237]

Grants

  1. 62225109/National Natural Science Foundation of China
  2. 2021YFC2100101/National Key R&D Program of China

MeSH Term

Neural Networks, Computer
Drug Repositioning
Proteins
Deep Learning
Humans
Algorithms
Computational Biology

Chemicals

Proteins

Word Cloud

Created with Highcharts 10.0.0DTIfeaturesrelationallearningpredictiongraphcontrastivestructuraldrugsproteinsextractedheterogeneouspartdrugrepurposingaccuracyfocususingCNNperformancesimilarity-basedRSGCL-DTIproposeddrug-proteinnetworkabilityprocessimperativepredictinteractionstargetaccurateefficientmannerintroductiondrug-targetwillimprovedHoweverlargemethodsbaseddeepeitherGNNneuralnetworksSincedescribeattributeinformationdifferentperspectivescombinationcanimproveproposecombinesenhancepredictionsmethodinter-proteininter-druginteractionrespectivelyresultsdemonstratecombiningobtainedonesD-MPNNenhancesfeaturerepresentationtherebyimprovingoutperformseightSOTAbaselinemodelsfourbenchmarkdatasetsperformswellimbalanceddatasetalsoshowsexcellentgeneralizationunseenpairsRelationalsimilarity

Similar Articles

Cited By