Martini3-IDP: improved Martini 3 force field for disordered proteins.

Liguo Wang, Christopher Brasnett, Luís Borges-Araújo, Paulo C T Souza, Siewert J Marrink
Author Information
  1. Liguo Wang: Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands. ORCID
  2. Christopher Brasnett: Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands. ORCID
  3. Luís Borges-Araújo: Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France. ORCID
  4. Paulo C T Souza: Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France. ORCID
  5. Siewert J Marrink: Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands. s.j.marrink@rug.nl. ORCID

Abstract

Coarse-grained (CG) molecular dynamics (MD) is widely used for the efficient simulation of intrinsically disordered proteins (IDPs). The Martini model, one of the most popular CG force fields in biomolecular simulation, was reported to yield too compact IDP conformations, limiting its applications. Addressing this, we optimized the bonded parameters based on fitting to reference simulations of a diverse set of IDPs at atomistic resolution, resulting in a Martini3-based disordered protein model coined Martini3-IDP. This model leads to expanded IDP conformations, greatly improving the reproduction of the experimentally measured radii of gyration. Moreover, contrary to ad-hoc fixes based on scaling of protein-protein or protein-water interactions, Martini3-IDP keeps the overall interaction balance underlying Martini 3. To validate that, we perform a comprehensive testing including full-length multidomain proteins, IDP-lipid membrane binding and IDP-small molecule binding, confirming its ability to successfully capture the complex interplay between disordered proteins and diverse biomolecular components. Finally, the recently emerging concept of biomolecular condensate, through liquid-liquid phase separation, was also reproduced by Martini3-IDP for a number of both homotypic and heterotypic systems. With the improved Martini3-IDP model, we expand the ability to simulate processes involving IDPs in complex environments, at spatio-temporal scales inaccessible with all-atom models.

References

  1. J Comput Chem. 2011 Jul 30;32(10):2319-27 [PMID: 21500218]
  2. J Chem Inf Model. 2021 Mar 22;61(3):1037-1047 [PMID: 33591749]
  3. Chem Sci. 2021 May 18;12(24):8521-8530 [PMID: 34221333]
  4. Chem Sci. 2022 Dec 24;14(5):1168-1175 [PMID: 36756326]
  5. Immunity. 2020 Jul 14;53(1):43-53 [PMID: 32668227]
  6. Nat Struct Mol Biol. 2024 Feb;31(2):283-292 [PMID: 38177684]
  7. Nat Commun. 2024 Feb 8;15(1):1201 [PMID: 38331917]
  8. Nucleic Acids Res. 2021 Mar 18;49(5):2931-2945 [PMID: 33577679]
  9. Curr Res Struct Biol. 2021 Sep 07;3:216-228 [PMID: 34557680]
  10. Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):E3743-52 [PMID: 24043820]
  11. Nat Methods. 2017 Jan;14(1):71-73 [PMID: 27819658]
  12. Nat Commun. 2023 Jul 13;14(1):4165 [PMID: 37443299]
  13. Trends Biochem Sci. 2024 Feb;49(2):101-104 [PMID: 37949765]
  14. PLoS One. 2012;7(4):e34687 [PMID: 22496841]
  15. PLoS Comput Biol. 2018 Jan 24;14(1):e1005941 [PMID: 29364893]
  16. J Chem Theory Comput. 2016 May 10;12(5):2446-58 [PMID: 27042944]
  17. Proc Natl Acad Sci U S A. 2018 May 22;115(21):E4758-E4766 [PMID: 29735687]
  18. Nat Commun. 2022 Jan 10;13(1):68 [PMID: 35013176]
  19. J Chem Theory Comput. 2022 Oct 11;18(10):6310-6323 [PMID: 36084347]
  20. Methods Mol Biol. 2024;2780:165-201 [PMID: 38987470]
  21. EMBO J. 2023 Aug 1;42(15):e113565 [PMID: 37305927]
  22. J Phys Chem Lett. 2019 May 2;10(9):2227-2234 [PMID: 30990694]
  23. Commun Biol. 2023 Nov 20;6(1):1182 [PMID: 37985798]
  24. Nat Comput Sci. 2021 Nov;1(11):732-743 [PMID: 35795820]
  25. J Chem Theory Comput. 2021 May 11;17(5):3088-3102 [PMID: 33913726]
  26. Nat Struct Mol Biol. 2019 Jul;26(7):637-648 [PMID: 31270472]
  27. Curr Opin Struct Biol. 2021 Dec;71:110-115 [PMID: 34303077]
  28. J Biomol Struct Dyn. 2012;30(2):137-49 [PMID: 22702725]
  29. Cell Rep. 2018 Feb 6;22(6):1401-1412 [PMID: 29425497]
  30. Mol Cell. 2020 Aug 6;79(3):459-471.e4 [PMID: 32553192]
  31. Cell. 2023 Oct 26;186(22):4737-4756 [PMID: 37890457]
  32. Nat Methods. 2021 Apr;18(4):382-388 [PMID: 33782607]
  33. J Phys Chem B. 2023 Jun 8;127(22):5018-5026 [PMID: 37222424]
  34. Nucleic Acids Res. 2024 Jan 5;52(D1):D536-D544 [PMID: 37904608]
  35. Biophys J. 2023 Nov 21;122(22):4370-4381 [PMID: 37853696]
  36. J Chem Theory Comput. 2023 Apr 11;19(7):2109-2119 [PMID: 36821400]
  37. Nat Methods. 2020 Mar;17(3):261-272 [PMID: 32015543]
  38. J Phys Chem A. 2022 Sep 8;126(35):5985-6003 [PMID: 36030416]
  39. Curr Res Struct Biol. 2020 Dec 08;3:30-40 [PMID: 34235484]
  40. Annu Rev Phys Chem. 2020 Apr 20;71:53-75 [PMID: 32312191]
  41. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  42. Chem Sci. 2020 Dec 28;12(8):3004-3016 [PMID: 34164069]
  43. Nat Commun. 2020 Jul 24;11(1):3714 [PMID: 32709852]
  44. J Biol Chem. 2017 Oct 27;292(43):17845-17856 [PMID: 28893908]
  45. Protein Cell. 2015 Aug;6(8):619-23 [PMID: 25944044]
  46. PLoS Comput Biol. 2020 Apr 27;16(4):e1007870 [PMID: 32339173]
  47. J Phys Chem B. 2024 Jul 11;128(27):6492-6508 [PMID: 38950000]
  48. Chem Rev. 2023 Jul 26;123(14):8945-8987 [PMID: 36881934]
  49. J Chem Theory Comput. 2022 Apr 12;18(4):2033-2041 [PMID: 35377637]
  50. J Chem Theory Comput. 2014 Feb 11;10(2):676-90 [PMID: 26580045]
  51. J Comput Chem. 2011 Jul 15;32(9):1919-28 [PMID: 21469160]
  52. Nat Chem Biol. 2008 Dec;4(12):728-37 [PMID: 19008886]
  53. J Chem Theory Comput. 2015 May 12;11(5):2144-55 [PMID: 26574417]
  54. Nucleic Acids Res. 2017 Jan 4;45(D1):D313-D319 [PMID: 27899672]
  55. Biopolymers. 1983 Dec;22(12):2577-637 [PMID: 6667333]
  56. Faraday Discuss. 2021 Dec 24;232(0):131-148 [PMID: 34543365]
  57. Nucleic Acids Res. 2018 Jul 2;46(W1):W296-W303 [PMID: 29788355]
  58. Structure. 2016 Nov 1;24(11):2000-2007 [PMID: 27720588]
  59. Nature. 2016 Jun 29;535(7611):308-12 [PMID: 27362226]
  60. Nat Rev Mol Cell Biol. 2021 Mar;22(3):215-235 [PMID: 33169001]
  61. Nat Commun. 2024 Aug 5;15(1):6645 [PMID: 39103332]
  62. Sci Adv. 2020 Oct 14;6(42): [PMID: 33055165]
  63. Nat Commun. 2022 Oct 27;13(1):6390 [PMID: 36302916]
  64. Proc Natl Acad Sci U S A. 2021 Nov 2;118(44): [PMID: 34716273]
  65. Nature. 2018 Mar 1;555(7694):61-66 [PMID: 29466338]
  66. Nat Chem. 2024 Jul;16(7):1062-1072 [PMID: 38316988]
  67. J Chem Theory Comput. 2014 Nov 11;10(11):5113-5124 [PMID: 25400522]
  68. Cell Mol Life Sci. 2021 Mar;78(5):2263-2278 [PMID: 32936312]
  69. Emerg Top Life Sci. 2020 Dec 11;4(3):307-329 [PMID: 33078839]
  70. J Am Chem Soc. 2022 Feb 16;144(6):2501-2510 [PMID: 35130691]
  71. Commun Chem. 2024 Jul 4;7(1):151 [PMID: 38961263]
  72. J Chem Inf Model. 2023 Feb 13;63(3):702-710 [PMID: 36656159]
  73. Trends Biochem Sci. 2016 Jan;41(1):46-61 [PMID: 26705895]
  74. J Chem Theory Comput. 2023 Oct 24;19(20):7112-7135 [PMID: 37788237]
  75. Biomacromolecules. 2023 Feb 13;24(2):714-723 [PMID: 36692364]
  76. Chem Rev. 2014 Jul 9;114(13):6589-631 [PMID: 24773235]
  77. Nat Commun. 2019 Nov 29;10(1):5465 [PMID: 31784535]
  78. Cell Mol Life Sci. 2017 Sep;74(17):3205-3224 [PMID: 28601983]
  79. Annu Rev Biophys. 2024 Jul;53(1):319-341 [PMID: 38360555]
  80. QRB Discov. 2022 Oct 12;3:e19 [PMID: 37529288]
  81. Nature. 2023 Jul;619(7971):876-883 [PMID: 37468629]
  82. Nat Rev Mol Cell Biol. 2024 Mar;25(3):187-211 [PMID: 37957331]
  83. Biochim Biophys Acta Proteins Proteom. 2024 Jul 1;1872(4):141014 [PMID: 38670324]
  84. J Chem Theory Comput. 2015 Nov 10;11(11):5525-42 [PMID: 26574340]

Grants

  1. 101053661/EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)

MeSH Term

Intrinsically Disordered Proteins
Molecular Dynamics Simulation
Protein Conformation
Water
Protein Binding
Biomolecular Condensates
Humans

Chemicals

Intrinsically Disordered Proteins
Water

Word Cloud

Created with Highcharts 10.0.0disorderedproteinsmodelMartini3-IDPIDPsMartinibiomolecularCGsimulationforceIDPconformationsbaseddiverse3bindingabilitycompleximprovedCoarse-grainedmoleculardynamicsMDwidelyusedefficientintrinsicallyonepopularfieldsreportedyieldcompactlimitingapplicationsAddressingoptimizedbondedparametersfittingreferencesimulationssetatomisticresolutionresultingMartini3-basedproteincoinedleadsexpandedgreatlyimprovingreproductionexperimentallymeasuredradiigyrationMoreovercontraryad-hocfixesscalingprotein-proteinprotein-waterinteractionskeepsoverallinteractionbalanceunderlyingvalidateperformcomprehensivetestingincludingfull-lengthmultidomainIDP-lipidmembraneIDP-smallmoleculeconfirmingsuccessfullycaptureinterplaycomponentsFinallyrecentlyemergingconceptcondensateliquid-liquidphaseseparationalsoreproducednumberhomotypicheterotypicsystemsexpandsimulateprocessesinvolvingenvironmentsspatio-temporalscalesinaccessibleall-atommodelsMartini3-IDP:field

Similar Articles

Cited By