Excessive Alcohol Use as a Risk Factor for Alzheimer's Disease: Epidemiological and Preclinical Evidence.

Paige E Anton, Nicole M Maphis, David N Linsenbardt, Leon G Coleman
Author Information
  1. Paige E Anton: Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
  2. Nicole M Maphis: Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
  3. David N Linsenbardt: Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
  4. Leon G Coleman: Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA. leon_coleman@med.unc.edu.

Abstract

Alcohol use has recently emerged as a modifiable risk factor for Alzheimer's disease (AD). However, the neurobiological mechanisms by which alcohol interacts with AD pathogenesis remain poorly understood. In this chapter, we review the epidemiological and preclinical support for the interaction between alcohol use and AD. We hypothesize that alcohol use increases the rate of accumulation of specific AD-relevant pathologies during the prodromal phase and exacerbates dementia onset and progression. We find that alcohol consumption rates are increasing in adolescence, middle age, and aging populations. In tandem, rates of AD are also on the rise, potentially as a result of this increased alcohol use throughout the lifespan. We then review the biological processes in common between alcohol use disorder and AD as a means to uncover potential mechanisms by which they interact; these include oxidative stress, neuroimmune function, metabolism, pathogenic tauopathy development and spread, and neuronal excitatory/inhibitory balance (EIB). Finally, we provide some forward-thinking suggestions we believe this field should consider. In particular, the inclusion of alcohol use assessments in longitudinal studies of AD and more preclinical studies on alcohol's impacts using better animal models of late-onset Alzheimer's disease (LOAD).

Keywords

References

  1. ADAPT Research Group, Lyketsos CG, Breitner JCS et al (2007) Naproxen and celecoxib do not prevent AD in early results from a randomized controlled trial. Neurology 68:1800���1808. https://doi.org/10.1212/01.wnl.0000260269.93245.d2 [DOI: 10.1212/01.wnl.0000260269.93245.d2]
  2. ADGC, TEADI, and CHARGE et al (2019) Genetic meta-analysis of diagnosed Alzheimer���s disease identifies new risk loci and implicates A��, tau, immunity and lipid processing. Nat Genet 51:414���430. https://doi.org/10.1038/s41588-019-0358-2 [DOI: 10.1038/s41588-019-0358-2]
  3. Alberto GE, Klorig DC, Goldstein AT, Godwin DW (2023) Alcohol withdrawal produces changes in excitability, population discharge probability, and seizure threshold. Alcohol Clin Exp Res 47:211���218. https://doi.org/10.1111/acer.15004 [DOI: 10.1111/acer.15004]
  4. Alfonso-Loeches S, Pascual-Lucas M, Blanco AM et al (2010) Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage. J Neurosci 30:8285���8295. https://doi.org/10.1523/jneurosci.0976-10.2010 [DOI: 10.1523/jneurosci.0976-10.2010]
  5. Almeida MF, Bahr BA, Kinsey ST (2020) Endosomal-lysosomal dysfunction in metabolic diseases and Alzheimer���s disease. Int Rev Neurobiol 154:303���324. https://doi.org/10.1016/bs.irn.2020.02.012 [DOI: 10.1016/bs.irn.2020.02.012]
  6. Alquezar C, Arya S, Kao AW (2021) Tau post-translational modifications: dynamic transformers of tau function, degradation, and aggregation. Front Neurol 11:595532. https://doi.org/10.3389/fneur.2020.595532 [DOI: 10.3389/fneur.2020.595532]
  7. Aman Y, Schmauck-Medina T, Hansen M et al (2021) Autophagy in healthy aging and disease. Nat Aging 1:634���650. https://doi.org/10.1038/s43587-021-00098-4 [DOI: 10.1038/s43587-021-00098-4]
  8. Amatniek JC, Hauser WA, DelCastillo-Castaneda C et al (2006) Incidence and predictors of seizures in patients with Alzheimer���s disease. Epilepsia 47:867���872. https://doi.org/10.1111/j.1528-1167.2006.00554.x [DOI: 10.1111/j.1528-1167.2006.00554.x]
  9. Anastacio HTD, Matosin N, Ooi L (2022) Neuronal hyperexcitability in Alzheimer���s disease: what are the drivers behind this aberrant phenotype? Transl Psychiatry 12:257. https://doi.org/10.1038/s41398-022-02024-7 [DOI: 10.1038/s41398-022-02024-7]
  10. Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10:S18���S25. https://doi.org/10.1038/nrn1434 [DOI: 10.1038/nrn1434]
  11. Andreadis A (2005) Tau gene alternative splicing: expression patterns, regulation and modulation of function in normal brain and neurodegenerative diseases. Biochim Biophys Acta (BBA) Mol Basis Dis 1739:91���103. https://doi.org/10.1016/j.bbadis.2004.08.010 [DOI: 10.1016/j.bbadis.2004.08.010]
  12. Andreadis A (2006) Alternative splicing and disease. Prog Mol Subcell Biol 44:89���107. https://doi.org/10.1007/978-3-540-34449-0_5 [DOI: 10.1007/978-3-540-34449-0_5]
  13. Andrews SJ, Fulton-Howard B, Goate A (2020) Interpretation of risk loci from genome-wide association studies of Alzheimer���s disease. Lancet Neurol 19:326���335. https://doi.org/10.1016/s1474-4422(19)30435-1 [DOI: 10.1016/s1474-4422(19)30435-1]
  14. Andrews SJ, Renton AE, Fulton-Howard B et al (2023) The complex genetic architecture of Alzheimer���s disease: novel insights and future directions. eBioMedicine 90:104511. https://doi.org/10.1016/j.ebiom.2023.104511 [DOI: 10.1016/j.ebiom.2023.104511]
  15. Angioni D, Delrieu J, Hansson O et al (2022) Blood biomarkers from research use to clinical practice: what must be done? A report from the EU/US CTAD Task Force. J Prev Alzheimers Dis 9:569���579. https://doi.org/10.14283/jpad.2022.85 [DOI: 10.14283/jpad.2022.85]
  16. Anna BS, Cattaud V, Bezzina C et al (2023) Neuronal hyperexcitability in the Tg2576 mouse model of Alzheimer���s disease���the influence of sleep and noradrenergic transmission. Neurobiol Aging 123:35���48. https://doi.org/10.1016/j.neurobiolaging.2022.11.017 [DOI: 10.1016/j.neurobiolaging.2022.11.017]
  17. Annadurai N, Sanctis JBD, Hajd��ch M, Das V (2021) Tau secretion and propagation: Perspectives for potential preventive interventions in Alzheimer���s disease and other tauopathies. Exp Neurol 113756. https://doi.org/10.1016/j.expneurol.2021.113756
  18. Anton PE, Rutt LN, Kaufman ML et al (2024) Binge ethanol exposure in advanced age elevates neuroinflammation and early indicators of neurodegeneration and cognitive impairment in female mice. Brain Behav Immun 116:303���316. https://doi.org/10.1016/j.bbi.2023.12.034 [DOI: 10.1016/j.bbi.2023.12.034]
  19. Anttila T, Helkala E-L, Viitanen M et al (2004) Alcohol drinking in middle age and subsequent risk of mild cognitive impairment and dementia in old age: a prospective population based study. BMJ 329:539 [DOI: 10.1136/bmj.38181.418958.BE]
  20. Aouci R, Soudany ME, Maakoul Z et al (2022) Dlx5/6 expression levels in mouse GABAergic neurons regulate adult parvalbumin neuronal density and anxiety/compulsive behaviours. Cells 11:1739. https://doi.org/10.3390/cells11111739 [DOI: 10.3390/cells11111739]
  21. Apostolova LG, Di LJ, Duffy EL et al (2014) Risk factors for behavioral abnormalities in mild cognitive impairment and mild Alzheimer���s disease. Dement Geriatr Cogn 37:315���326. https://doi.org/10.1159/000351009 [DOI: 10.1159/000351009]
  22. Aragon CMG, Rogan F, Amit Z (1992) Ethanol metabolism in rat brain homogenates by a catalase-H2O2 system. Biochem Pharmacol 44:93���98. https://doi.org/10.1016/0006-2952(92)90042-h [DOI: 10.1016/0006-2952(92)90042-h]
  23. ARUK Consortium, EADI, GERAD/PERADES, CHARGE, ADGC, Sims R et al (2017) Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer���s disease. Nat Genet 49:1373���1384. https://doi.org/10.1038/ng.3916 [DOI: 10.1038/ng.3916]
  24. Asai H, Ikezu S, Tsunoda S et al (2015) Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci 18:1584���1593. https://doi.org/10.1038/nn.4132 [DOI: 10.1038/nn.4132]
  25. Ashton NJ, Pascoal TA, Karikari TK et al (2021) Plasma p-tau231: a new biomarker for incipient Alzheimer���s disease pathology. Acta Neuropathol 1���16. https://doi.org/10.1007/s00401-021-02275-6
  26. Athanasaki A, Melanis K, Tsantzali I et al (2022) Type 2 diabetes mellitus as a risk factor for Alzheimer���s disease: review and meta-analysis. Biomedicines 10:778. https://doi.org/10.3390/biomedicines10040778 [DOI: 10.3390/biomedicines10040778]
  27. Azuar J, Bouaziz-Amar E, Cognat E et al (2021) Cerebrospinal fluid biomarkers in patients with alcohol use disorder and persistent cognitive impairment. Alcohol Clin Exp Res 45:561���565. https://doi.org/10.1111/acer.14554 [DOI: 10.1111/acer.14554]
  28. Bacioglu M, Maia LF, Preische O et al (2016) Neurofilament light chain in blood and CSF as marker of disease progression in mouse models and in neurodegenerative diseases. Neuron 91:56���66. https://doi.org/10.1016/j.neuron.2016.05.018 [DOI: 10.1016/j.neuron.2016.05.018]
  29. Barbour AJ, Gourmaud S, Stewart DA et al (2023) Seizures exacerbate excitatory-inhibitory imbalance and tau seeding effects in 5XFAD mice. Alzheimers Dement 19. https://doi.org/10.1002/alz.067907
  30. Barbour AJ, Gourmaud S, Lancaster E et al (2024) Seizures exacerbate excitatory: inhibitory imbalance in Alzheimer���s disease and 5XFAD mice. Brain 147:2169���2184. https://doi.org/10.1093/brain/awae126 [DOI: 10.1093/brain/awae126]
  31. Barnett AM, David E, Rohlman AR et al (2022) Adolescent binge alcohol enhances early Alzheimer���s disease pathology in adulthood through proinflammatory neuroimmune activation. Front Pharmacol 13:884170. https://doi.org/10.3389/fphar.2022.884170 [DOI: 10.3389/fphar.2022.884170]
  32. Barnett AG, Dawkins L, Zou J et al (2024) Loss of neuronal lysosomal acid lipase drives amyloid pathology in Alzheimer���s disease. bioRxiv. https://doi.org/10.1101/2024.06.09.596693
  33. Barrachina M, Maes T, Buesa C, Ferrer I (2006) Lysosome-associated membrane protein 1 (LAMP-1) in Alzheimer���s disease. Neuropathol Appl Neurobiol 32:505���516. https://doi.org/10.1111/j.1365-2990.2006.00756.x [DOI: 10.1111/j.1365-2990.2006.00756.x]
  34. Barth��lemy NR, Bateman RJ, Hirtz C et al (2020) Cerebrospinal fluid phospho-tau T217 outperforms T181 as a biomarker for the differential diagnosis of Alzheimer���s disease and PET amyloid-positive patient identification. Alzheimers Res Ther 12:26. https://doi.org/10.1186/s13195-020-00596-4 [DOI: 10.1186/s13195-020-00596-4]
  35. Barth��lemy NR, Saef B, Li Y et al (2023) CSF tau phosphorylation occupancies at T217 and T205 represent improved biomarkers of amyloid and tau pathology in Alzheimer���s disease. Nat Aging 3:391���401. https://doi.org/10.1038/s43587-023-00380-7 [DOI: 10.1038/s43587-023-00380-7]
  36. Barth��lemy NR, Salvad�� G, Schindler SE et al (2024) Highly accurate blood test for Alzheimer���s disease is similar or superior to clinical cerebrospinal fluid tests. Nat Med 30:1085���1095. https://doi.org/10.1038/s41591-024-02869-z [DOI: 10.1038/s41591-024-02869-z]
  37. Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8:45���56. https://doi.org/10.1038/nrn2044 [DOI: 10.1038/nrn2044]
  38. Bassett SS, Yousem DM, Cristinzio C et al (2006) Familial risk for Alzheimer���s disease alters fMRI activation patterns. Brain 129:1229���1239. https://doi.org/10.1093/brain/awl089 [DOI: 10.1093/brain/awl089]
  39. Beagle AJ, Darwish SM, Ranasinghe KG et al (2017) Relative incidence of seizures and myoclonus in Alzheimer���s disease, dementia with Lewy bodies, and frontotemporal dementia. J Alzheimers Dis 60(1):211���223. https://doi.org/10.3233/jad-170031 [DOI: 10.3233/jad-170031]
  40. Becker HC (1998) Kindling in alcohol withdrawal. Alcohol Health Res World 22:25���33 [>PMCID: ]
  41. Bell BJ, Malvankar MM, Tallon C, Slusher BS (2020) Sowing the seeds of discovery: tau-propagation models of Alzheimer���s disease. ACS Chem Neurosci 11:3499���3509. https://doi.org/10.1021/acschemneuro.0c00531 [DOI: 10.1021/acschemneuro.0c00531]
  42. Bellenguez C, K������kali F, Jansen IE et al (2022) New insights into the genetic etiology of Alzheimer���s disease and related dementias. Nat Genet 54:412���436. https://doi.org/10.1038/s41588-022-01024-z [DOI: 10.1038/s41588-022-01024-z]
  43. Benoit M, Berrut G, Doussaint J et al (2012) Apathy and depression in mild Alzheimer���s disease: a cross-sectional study using diagnostic criteria. J Alzheimers Dis 31:325���334. https://doi.org/10.3233/jad-2012-112003 [DOI: 10.3233/jad-2012-112003]
  44. Bezzina C, Verret L, Juan C et al (2015) Early onset of hypersynchronous network activity and expression of a marker of chronic seizures in the Tg2576 mouse model of Alzheimer���s disease. PLoS One 10:e0119910. https://doi.org/10.1371/journal.pone.0119910 [DOI: 10.1371/journal.pone.0119910]
  45. Bhaskar K, Konerth M, Kokiko-Cochran ON et al (2010) Regulation of tau pathology by the microglial fractalkine receptor. Neuron 68:19���31. https://doi.org/10.1016/j.neuron.2010.08.023 [DOI: 10.1016/j.neuron.2010.08.023]
  46. Binder LI, Guillozet-Bongaarts AL, Garcia-Sierra F, Berry RW (2005) Tau, tangles, and Alzheimer���s disease. Biochim Biophys Acta (BBA) Mol Basis Dis 1739:216���223. https://doi.org/10.1016/j.bbadis.2004.08.014 [DOI: 10.1016/j.bbadis.2004.08.014]
  47. Binette AP, Palmqvist S, Bali D et al (2022) Combining plasma phospho-tau and accessible measures to evaluate progression to Alzheimer���s dementia in mild cognitive impairment patients. Alzheimers Res Ther 14:46. https://doi.org/10.1186/s13195-022-00990-0 [DOI: 10.1186/s13195-022-00990-0]
  48. Bo RD, Angeretti N, Lucca E et al (1995) Reciprocal control of inflammatory cytokines, IL-1 and IL-6, and beta-amyloid production in cultures. Neurosci Lett 188:70���74. https://doi.org/10.1016/0304-3940(95)11384-9 [DOI: 10.1016/0304-3940(95)11384-9]
  49. Born HA (2015) Seizures in Alzheimer���s disease. Neuroscience 286:251���263. https://doi.org/10.1016/j.neuroscience.2014.11.051 [DOI: 10.1016/j.neuroscience.2014.11.051]
  50. Braak H, Braak E (1991a) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239���259. https://doi.org/10.1007/bf00308809 [DOI: 10.1007/bf00308809]
  51. Braak H, Braak E (1991b) Demonstration of amyloid deposits and neurofibrillary changes in whole brain sections. Brain Pathol 1
  52. Bradfield NI, Ames D (2020) Mild cognitive impairment: narrative review of taxonomies and systematic review of their prediction of incident Alzheimer���s disease dementia. BJPsych Bull 44:67���74. https://doi.org/10.1192/bjb.2019.77 [DOI: 10.1192/bjb.2019.77]
  53. Brelstaff JH, Mason M, Katsinelos T et al (2021) Microglia become hypofunctional and release metalloproteases and tau seeds when phagocytosing live neurons with P301S tau aggregates. Sci Adv 7:eabg4980. https://doi.org/10.1126/sciadv.abg4980 [DOI: 10.1126/sciadv.abg4980]
  54. Breslow RA, Castle IP, Chen CM, Graubard BI (2017) Trends in alcohol consumption among older Americans: National Health Interview Surveys, 1997 to 2014. Alcohol Clin Exp Res 41:976���986. https://doi.org/10.1111/acer.13365 [DOI: 10.1111/acer.13365]
  55. Brunello CA, Merezhko M, Uronen R-L, Huttunen HJ (2019) Mechanisms of secretion and spreading of pathological tau protein. Cell Mol Life Sci 1���24. https://doi.org/10.1007/s00018-019-03349-1
  56. Butterfield DA, Halliwell B (2019) Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci 20:148���160. https://doi.org/10.1038/s41583-019-0132-6 [DOI: 10.1038/s41583-019-0132-6]
  57. Buzs��ki G, Kaila K, Raichle M (2007) Inhibition and brain work. Neuron 56:771���783. https://doi.org/10.1016/j.neuron.2007.11.008 [DOI: 10.1016/j.neuron.2007.11.008]
  58. Cai C, Zambach SA, Grubb S et al (2023) Impaired dynamics of precapillary sphincters and pericytes at first-order capillaries predict reduced neurovascular function in the aging mouse brain. Nat Aging 3:173���184. https://doi.org/10.1038/s43587-022-00354-1 [DOI: 10.1038/s43587-022-00354-1]
  59. Caponio D, Veverov�� K, Zhang S et al (2022) Compromised autophagy and mitophagy in brain ageing and Alzheimer���s diseases. Aging Brain 2:100056. https://doi.org/10.1016/j.nbas.2022.100056 [DOI: 10.1016/j.nbas.2022.100056]
  60. Carroll T, Guha S, Nehrke K, Johnson GVW (2021) Tau post-translational modifications: potentiators of selective vulnerability in sporadic Alzheimer���s disease. Biology 10:1047. https://doi.org/10.3390/biology10101047 [DOI: 10.3390/biology10101047]
  61. Castano-Prat P, Perez-Mendez L, Perez-Zabalza M et al (2019) Altered slow (<1 Hz) and fast (beta and gamma) neocortical oscillations in the 3xTg-AD mouse model of Alzheimer���s disease under anesthesia. Neurobiol Aging 79:142���151. https://doi.org/10.1016/j.neurobiolaging.2019.02.009 [DOI: 10.1016/j.neurobiolaging.2019.02.009]
  62. Castellani R, Smith MA, Richey PL et al (1995) Evidence for oxidative stress in Pick disease and corticobasal degeneration. Brain Res 696:268���271. https://doi.org/10.1016/0006-8993(95)00535-x [DOI: 10.1016/0006-8993(95)00535-x]
  63. Catavero CM, Marsh AE, Downs AM et al (2022) Effects of long-term alcohol consumption on behavior in the P301S (Line PS19) tauopathy mouse model. Biorxiv 2022(07):12.499737. https://doi.org/10.1101/2022.07.12.499737 [DOI: 10.1101/2022.07.12.499737]
  64. Cattaud V, Bezzina C, Rey CC et al (2018) Early disruption of parvalbumin expression and perineuronal nets in the hippocampus of the Tg2576 mouse model of Alzheimer���s disease can be rescued by enriched environment. Neurobiol Aging 72:147���158. https://doi.org/10.1016/j.neurobiolaging.2018.08.024 [DOI: 10.1016/j.neurobiolaging.2018.08.024]
  65. Celone KA, Calhoun VD, Dickerson BC et al (2006) Alterations in memory networks in mild cognitive impairment and Alzheimer���s disease: an independent component analysis. J Neurosci 26:10222���10231. https://doi.org/10.1523/jneurosci.2250-06.2006 [DOI: 10.1523/jneurosci.2250-06.2006]
  66. Chastain LG, Sarkar DK (2014) Chapter four. Role of microglia in regulation of ethanol neurotoxic action. Int Rev Neurobiol 118:81���103. https://doi.org/10.1016/b978-0-12-801284-0.00004-x [DOI: 10.1016/b978-0-12-801284-0.00004-x]
  67. Chatterjee P, Pedrini S, Stoops E et al (2021) Plasma glial fibrillary acidic protein is elevated in cognitively normal older adults at risk of Alzheimer���s disease. Transl Psychiatry 11:27. https://doi.org/10.1038/s41398-020-01137-1 [DOI: 10.1038/s41398-020-01137-1]
  68. Chen Y, Chang L, Blennow K et al (2020) An ultrasensitive immunoassay for detection of p-tau181 in blood. Alzheimers Dement 16. https://doi.org/10.1002/alz.041238
  69. Chiu M-J, Fan L-Y, Chen T-F et al (2017) Plasma tau levels in cognitively normal middle-aged and older adults. Front Aging Neurosci 9:51. https://doi.org/10.3389/fnagi.2017.00051 [DOI: 10.3389/fnagi.2017.00051]
  70. Choi Y, Kim H-S, Shin KY et al (2007) Minocycline attenuates neuronal cell death and improves cognitive impairment in Alzheimer���s disease models. Neuropsychopharmacology 32:2393���2404. https://doi.org/10.1038/sj.npp.1301377 [DOI: 10.1038/sj.npp.1301377]
  71. Chosy EJ, Edland S, Launer L, White LR (2022) Midlife alcohol consumption and later life cognitive impairment: Light drinking is not protective and APOE genotype does not change this relationship. PLoS One 17:e0264575. https://doi.org/10.1371/journal.pone.0264575 [DOI: 10.1371/journal.pone.0264575]
  72. Chung H, Park K, Jang HJ et al (2020) Dissociation of somatostatin and parvalbumin interneurons circuit dysfunctions underlying hippocampal theta and gamma oscillations impaired by amyloid �� oligomers in vivo. Brain Struct Funct 225:935���954. https://doi.org/10.1007/s00429-020-02044-3 [DOI: 10.1007/s00429-020-02044-3]
  73. Coleman L, He J, Lee J et al (2011) Adolescent binge drinking alters adult brain neurotransmitter gene expression, behavior, brain regionalvolumes, and neurochemistry in mice. AlcoholClin Exp Res 35:671���688. https://doi.org/10.1111/j.1530-0277.2010.01385.x
  74. Coleman L, Liu W, Oguz I et al (2014) Adolescent binge ethanol treatment alters adult brain regional volumes, cortical extracellular matrix protein and behavioral flexibility. Pharmacol Biochem Behav 116:142���151. https://doi.org/10.1016/j.pbb.2013.11.021 [DOI: 10.1016/j.pbb.2013.11.021]
  75. Coleman L, Zou J, Qin L, Crews FT (2017) HMGB1/IL-1beta complexes regulate neuroimmune responses in alcoholism. Brain Behav Immun 72:61���77. https://doi.org/10.1016/j.bbi.2017.10.027 [DOI: 10.1016/j.bbi.2017.10.027]
  76. Coleman LG, Zou J, Crews FT (2020) Microglial depletion and repopulation in brain slice culture normalizes sensitized proinflammatory signaling. J Neuroinflammation 17:27. https://doi.org/10.1186/s12974-019-1678-y [DOI: 10.1186/s12974-019-1678-y]
  77. Conrad C, Zhu J, Conrad C et al (2007) Single molecule profiling of tau gene expression in Alzheimer���s disease. J Neurochem 103:1228���1236. https://doi.org/10.1111/j.1471-4159.2007.04857.x [DOI: 10.1111/j.1471-4159.2007.04857.x]
  78. Cope ZA, Murai T, Rizzo SJS (2022) Emerging electroencephalographic biomarkers to improve preclinical to clinical translation in Alzheimer���s disease. Front Aging Neurosci 14:805063. https://doi.org/10.3389/fnagi.2022.805063 [DOI: 10.3389/fnagi.2022.805063]
  79. Correas A, Cuesta P, Rosen BQ et al (2021) Compensatory neuroadaptation to binge drinking: Human evidence for allostasis. Addict Biol 26:e12960. https://doi.org/10.1111/adb.12960 [DOI: 10.1111/adb.12960]
  80. Crews FT, Vetreno RP (2014) Neuroimmune basis of alcoholic brain damage. Int Rev Neurobiol 118:315���357. https://doi.org/10.1016/b978-0-12-801284-0.00010-5 [DOI: 10.1016/b978-0-12-801284-0.00010-5]
  81. Crews FT, Qin L, Sheedy D et al (2013) High mobility group box 1/Toll-like receptor danger signaling increases brain neuroimmune activation in alcohol dependence. Biol Psychiatry 73:602���612. https://doi.org/10.1016/j.biopsych.2012.09.030 [DOI: 10.1016/j.biopsych.2012.09.030]
  82. Cribbs DH, Berchtold NC, Perreau V et al (2012) Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J Neuroinflammation 9:1���18. https://doi.org/10.1186/1742-2094-9-179 [DOI: 10.1186/1742-2094-9-179]
  83. Dage JL, Wennberg AMV, Airey DC et al (2016) Levels of tau protein in plasma are associated with neurodegeneration and cognitive function in a population-based elderly cohort. Alzheimers Dement 12:1226���1234. https://doi.org/10.1016/j.jalz.2016.06.001 [DOI: 10.1016/j.jalz.2016.06.001]
  84. Dalgediene I, Lasickiene R, Budvytyte R et al (2013) Immunogenic properties of amyloid beta oligomers. J Biomed Sci 20:10. https://doi.org/10.1186/1423-0127-20-10 [DOI: 10.1186/1423-0127-20-10]
  85. David DC, Hauptmann S, Scherping I et al (2005) Proteomic and functional analyses reveal a mitochondrial dysfunction in P301L tau transgenic mice. J Biol Chem 280:23802���23814. https://doi.org/10.1074/jbc.m500356200 [DOI: 10.1074/jbc.m500356200]
  86. Degenhardt L, Glantz M, Evans-Lacko S et al (2017) Estimating treatment coverage for people with substance use disorders: an analysis of data from the World Mental Health Surveys. World Psychiatry 16:299���307. https://doi.org/10.1002/wps.20457 [DOI: 10.1002/wps.20457]
  87. de Goede J, van der Mark-Reeuwijk KG, Braun KP et al (2021) Alcohol and brain development in adolescents and young adults: a systematic review of the literature and advisory report of the Health Council of the Netherlands. Adv Nutr 12:1379���1410. https://doi.org/10.1093/advances/nmaa170 [DOI: 10.1093/advances/nmaa170]
  88. Delanty N, Vaughan C (1998) Risk of Alzheimer���s disease and duration of NSAID use. Neurology 51:652. https://doi.org/10.1212/wnl.51.2.652 [DOI: 10.1212/wnl.51.2.652]
  89. der Mussele SV, Bekelaar K, Bastard NL et al (2012) Prevalence and associated behavioral symptoms of depression in mild cognitive impairment and dementia due to Alzheimer���s disease: Depressive symptoms in MCI and Alzheimer���s disease. Int J Geriatr Psych 28:947���958. https://doi.org/10.1002/gps.3909 [DOI: 10.1002/gps.3909]
  90. DeVos SL, Corjuc BT, Oakley DH et al (2018) Synaptic tau seeding precedes tau pathology in human Alzheimer���s disease brain. Front Neurosci (Switz) 12:267. https://doi.org/10.3389/fnins.2018.00267 [DOI: 10.3389/fnins.2018.00267]
  91. Dharavath RN, Pina-Leblanc C, Tang VM et al (2023) GABAergic signaling in alcohol use disorder and withdrawal: pathological involvement and therapeutic potential. Front Neural Circuits 17:1218737. https://doi.org/10.3389/fncir.2023.1218737 [DOI: 10.3389/fncir.2023.1218737]
  92. Dickerson BC, Salat DH, Greve DN et al (2005) Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 65:404���411. https://doi.org/10.1212/01.wnl.0000171450.97464.49 [DOI: 10.1212/01.wnl.0000171450.97464.49]
  93. Dienel GA (2019) Brain glucose metabolism: integration of energetics with function. Physiol Rev 99:949���1045. https://doi.org/10.1152/physrev.00062.2017 [DOI: 10.1152/physrev.00062.2017]
  94. Downs AM, Catavero CM, Kasten MR, McElligott ZA (2022) Tauopathy and alcohol consumption interact to alter locus coeruleus excitatory transmission and excitability in male and female mice. Alcohol. https://doi.org/10.1016/j.alcohol.2022.08.008
  95. Drummond E, Wisniewski T (2017) Alzheimer���s disease: experimental models and reality. Acta Neuropathol 133:155���175. https://doi.org/10.1007/s00401-016-1662-x [DOI: 10.1007/s00401-016-1662-x]
  96. Dujardin S, Commins C, Lathuiliere A et al (2020) Tau molecular diversity contributes to clinical heterogeneity in Alzheimer���s disease. Nat Med 1���8. https://doi.org/10.1038/s41591-020-0938-9
  97. Efthymiou AG, Goate AM (2017) Late onset Alzheimer���s disease genetics implicates microglial pathways in disease risk. Mol Neurodegener 12:1���12. https://doi.org/10.1186/s13024-017-0184-x [DOI: 10.1186/s13024-017-0184-x]
  98. Eid A, Mhatre I, Richardson JR (2019) Gene-environment interactions in Alzheimer���s disease: A potential path to precision medicine. Pharmacol Ther 199:173���187. https://doi.org/10.1016/j.pharmthera.2019.03.005 [DOI: 10.1016/j.pharmthera.2019.03.005]
  99. Eikelenboom P, van Exel E, Hoozemans JJ et al (2010) Neuroinflammation���an early event in both the history and pathogenesis of Alzheimer���s disease. Neurodegener Dis 7:38���41. https://doi.org/10.1159/000283480 [DOI: 10.1159/000283480]
  100. Emer��i�� A, Karikari TK, Rodr��guez-Lantero J et al (2020) CSF phosphorylated tau-217 is increased in Alzheimer���s and Creutzfeldt-Jakob diseases and correlates with amyloid pathology. Alzheimers Dement 16. https://doi.org/10.1002/alz.045296
  101. Ennerfelt H, Frost EL, Shapiro DA et al (2022) SYK coordinates neuroprotective microglial responses in neurodegenerative disease. Cell 185:4135���4152 e22. https://doi.org/10.1016/j.cell.2022.09.030 [DOI: 10.1016/j.cell.2022.09.030]
  102. Erickson EK, Grantham EK, Warden AS, Harris RA (2018) Neuroimmune signaling in alcohol use disorder. Pharmacol Biochem Be 177:34���60. https://doi.org/10.1016/j.pbb.2018.12.007 [DOI: 10.1016/j.pbb.2018.12.007]
  103. Etminan M, Gill S, Samii A (2003) Effect of non-steroidal anti-inflammatory drugs on risk of Alzheimer���s disease: systematic review and meta-analysis of observational studies. BMJ 327:128. https://doi.org/10.1136/bmj.327.7407.128 [DOI: 10.1136/bmj.327.7407.128]
  104. Fernandez-Lizarbe S, Pascual M, Guerri C (2009) Critical role of TLR4 response in the activation of microglia induced by ethanol. J Immunol 183:4733���4744. https://doi.org/10.4049/jimmunol.0803590 [DOI: 10.4049/jimmunol.0803590]
  105. Fisher RA, Miners JS, Love S (2022) Pathological changes within the cerebral vasculature in Alzheimer���s disease: New perspectives. Brain Pathol 32:e13061. https://doi.org/10.1111/bpa.13061 [DOI: 10.1111/bpa.13061]
  106. Fouquet M, Desgranges B, Landeau B et al (2009) Longitudinal brain metabolic changes from amnestic mild cognitive impairment to Alzheimer���s disease. Brain 132:2058���2067. https://doi.org/10.1093/brain/awp132 [DOI: 10.1093/brain/awp132]
  107. Fowler CJ, Stoops E, Rainey-Smith SR et al (2022) Plasma p-tau181/A��1-42 ratio predicts A��-PET status and correlates with CSF-p-tau181/A��1-42 and future cognitive decline. Alzheimers Dement Diagn Assess Dis Monit 14:e12375. https://doi.org/10.1002/dad2.12375 [DOI: 10.1002/dad2.12375]
  108. Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol Ser 69:S4���S9. https://doi.org/10.1093/gerona/glu057 [DOI: 10.1093/gerona/glu057]
  109. Frausto DM, Engen PA, Naqib A et al (2022) Impact of alcohol-induced intestinal microbiota dysbiosis in a rodent model of Alzheimer���s disease. Front Aging 3:916336. https://doi.org/10.3389/fragi.2022.916336 [DOI: 10.3389/fragi.2022.916336]
  110. Frigerio CS, Wolfs L, Fattorelli N et al (2019) The major risk factors for Alzheimer���s disease: age, sex, and genes modulate the microglia response to Abeta plaques. Cell Rep 27(1293���1306):e6. https://doi.org/10.1016/j.celrep.2019.03.099 [DOI: 10.1016/j.celrep.2019.03.099]
  111. Fritschy J-M, Br��nig I (2003) Formation and plasticity of GABAergic synapses: physiological mechanisms and pathophysiological implications. Pharmacol Ther 98:299���323. https://doi.org/10.1016/s0163-7258(03)00037-8 [DOI: 10.1016/s0163-7258(03)00037-8]
  112. Fujita K, Motoki K, Tagawa K et al (2016) HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer���s disease. Sci Rep 6:31895. https://doi.org/10.1038/srep31895 [DOI: 10.1038/srep31895]
  113. Gaikwad S, Puangmalai N, Bittar A et al (2021) Tau oligomer induced HMGB1 release contributes to cellular senescence and neuropathology linked to Alzheimer���s disease and frontotemporal dementia. Cell Rep 36:109419. https://doi.org/10.1016/j.celrep.2021.109419 [DOI: 10.1016/j.celrep.2021.109419]
  114. Gao C, Jiang J, Tan Y, Chen S (2023) Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther 8:359. https://doi.org/10.1038/s41392-023-01588-0 [DOI: 10.1038/s41392-023-01588-0]
  115. Gazestani V, Kamath T, Nadaf NM et al (2023) Early Alzheimer���s disease pathology in human cortex involves transient cell states. Cell 186:4438���4453.e23. https://doi.org/10.1016/j.cell.2023.08.005 [DOI: 10.1016/j.cell.2023.08.005]
  116. GBD 2019 Dementia Forecasting Collaborators (2022) Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health 7:e105���e125. https://doi.org/10.1016/s2468-2667(21)00249-8 [DOI: 10.1016/s2468-2667(21)00249-8]
  117. GBD 2021 Diseases and Injuries Collaborators, Ferrari AJ, Santomauro DF et al (2024) Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990���2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. https://doi.org/10.1016/s0140-6736(24)00757-8
  118. Gella A, Durany N (2009) Oxidative stress in Alzheimer disease. Cell Adhes Migr 3:88���93. https://doi.org/10.4161/cam.3.1.7402 [DOI: 10.4161/cam.3.1.7402]
  119. Gibbons GS, Lee VMY, Trojanowski JQ (2018) Mechanisms of cell-to-cell transmission of pathological tau: a review. JAMA Neurol 76:101. https://doi.org/10.1001/jamaneurol.2018.2505 [DOI: 10.1001/jamaneurol.2018.2505]
  120. Gilley DW, Bienias JL, Wilson RS et al (2004) Influence of behavioral symptoms on rates of institutionalization for persons with Alzheimer���s disease. Psychol Med 34:1129���1135. https://doi.org/10.1017/s0033291703001831 [DOI: 10.1017/s0033291703001831]
  121. Gimenez-Gomez P, Le T, Martin GE (2023) Modulation of neuronal excitability by binge alcohol drinking. Front Mol Neurosci 16:1098211. https://doi.org/10.3389/fnmol.2023.1098211 [DOI: 10.3389/fnmol.2023.1098211]
  122. Ginsberg SD, Che S, Counts SE, Mufson EJ (2006) Shift in the ratio of three-repeat tau and four-repeat tau mRNAs in individual cholinergic basal forebrain neurons in mild cognitive impairment and Alzheimer���s disease. J Neurochem 96:1401���1408. https://doi.org/10.1111/j.1471-4159.2005.03641.x [DOI: 10.1111/j.1471-4159.2005.03641.x]
  123. Ginsberg SD, Alldred MJ, Counts SE et al (2010) Microarray analysis of hippocampal CA1 neurons implicates early endosomal dysfunction during Alzheimer���s disease progression. Biol Psychiatry 68:885���893. https://doi.org/10.1016/j.biopsych.2010.05.030 [DOI: 10.1016/j.biopsych.2010.05.030]
  124. Glantz MD, Bharat C, Degenhardt L et al (2020) The epidemiology of alcohol use disorders cross-nationally: Findings from the World Mental Health Surveys. Addict Behav 102:106128. https://doi.org/10.1016/j.addbeh.2019.106128 [DOI: 10.1016/j.addbeh.2019.106128]
  125. Gnorich J, Reifschneider A, Wind K et al (2023) Depletion and activation of microglia impact metabolic connectivity of the mouse brain. J Neuroinflammation 20:47. https://doi.org/10.1186/s12974-023-02735-8 [DOI: 10.1186/s12974-023-02735-8]
  126. Goedert M, Spillantini MG, Potier MC et al (1989) Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J 8:393���399. https://doi.org/10.1002/j.1460-2075.1989.tb03390.x [DOI: 10.1002/j.1460-2075.1989.tb03390.x]
  127. Gonz��lez A, Pariente JA, Salido GM (2007) Ethanol stimulates ROS generation by mitochondria through Ca2+ mobilization and increases GFAP content in rat hippocampal astrocytes. Brain Res 1178:28���37. https://doi.org/10.1016/j.brainres.2007.08.040 [DOI: 10.1016/j.brainres.2007.08.040]
  128. Gonz��lez H, Elgueta D, Montoya A, Pacheco R (2014) Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J Neuroimmunol 274:1���13. https://doi.org/10.1016/j.jneuroim.2014.07.012 [DOI: 10.1016/j.jneuroim.2014.07.012]
  129. Goodson HV, Jonasson EM (2018) Microtubules and microtubule-associated proteins. Cold Spring Harb Perspect Biol 10:a022608. https://doi.org/10.1101/cshperspect.a022608 [DOI: 10.1101/cshperspect.a022608]
  130. Groot C, Smith R, Collij LE et al (2024) Tau positron emission tomography for predicting dementia in individuals with mild cognitive impairment. JAMA Neurol 81. https://doi.org/10.1001/jamaneurol.2024.1612
  131. Grucza RA, Sher KJ, Kerr WC et al (2018) Trends in adult alcohol use and binge drinking in the early 21st-century United States: a meta-analysis of 6 national survey series. Alcohol Clin Exp Res 42:1939���1950. https://doi.org/10.1111/acer.13859 [DOI: 10.1111/acer.13859]
  132. Gu J, Liu F (2020) Tau in Alzheimer���s disease: pathological alterations and an attractive therapeutic target. Curr M��d Sci 40:1009���1021. https://doi.org/10.1007/s11596-020-2282-1 [DOI: 10.1007/s11596-020-2282-1]
  133. Guadagna S, Esiri MM, Williams RJ, Francis PT (2012) Tau phosphorylation in human brain: relationship to behavioral disturbance in dementia. Neurobiol Aging 33:2798���2806. https://doi.org/10.1016/j.neurobiolaging.2012.01.015 [DOI: 10.1016/j.neurobiolaging.2012.01.015]
  134. Guerreiro R, Bras J (2015) The age factor in Alzheimer���s disease. Genome Med 7:106. https://doi.org/10.1186/s13073-015-0232-5 [DOI: 10.1186/s13073-015-0232-5]
  135. Guillozet AL, Weintraub S, Mash DC, Mesulam MM (2003) Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Arch Neurol 60:729���736. https://doi.org/10.1001/archneur.60.5.729 [DOI: 10.1001/archneur.60.5.729]
  136. Hamelin L, Lagarde J, Doroth��e G et al (2016) Early and protective microglial activation in Alzheimer���s disease: a prospective study using 18 F-DPA-714 PET imaging. Brain 139:1252���1264. https://doi.org/10.1093/brain/aww017 [DOI: 10.1093/brain/aww017]
  137. Hammond TC, Xing X, Wang C et al (2020) ��-amyloid and tau drive early Alzheimer���s disease decline while glucose hypometabolism drives late decline. Commun Biol 3:352. https://doi.org/10.1038/s42003-020-1079-x [DOI: 10.1038/s42003-020-1079-x]
  138. Hampel H, Lista S (2012) From inherited to sporadic AD���crossing the biomarker bridge. Nat Rev Neurol 8:598���600. https://doi.org/10.1038/nrneurol.2012.202 [DOI: 10.1038/nrneurol.2012.202]
  139. Hampel H, Hardy J, Blennow K et al (2021) The amyloid-�� pathway in Alzheimer���s disease. Mol Psychiatry 26:5481���5503. https://doi.org/10.1038/s41380-021-01249-0 [DOI: 10.1038/s41380-021-01249-0]
  140. Hanes J, Kovac A, Kvartsberg H et al (2020) Evaluation of a novel immunoassay to detect p-Tau Thr127 in the CSF to distinguish Alzheimer disease from other dementias. Neurology 95. https://doi.org/10.1212/wnl.0000000000010814
  141. Hansson O (2021) Biomarkers for neurodegenerative diseases. Nat Med 27:954���963. https://doi.org/10.1038/s41591-021-01382-x [DOI: 10.1038/s41591-021-01382-x]
  142. Hansson O, Edelmayer RM, Boxer AL et al (2022) The Alzheimer���s Association appropriate use recommendations for blood biomarkers in Alzheimer���s disease. Alzheimers Dement 18:2669���2686. https://doi.org/10.1002/alz.12756 [DOI: 10.1002/alz.12756]
  143. Hansson O, Blennow K, Zetterberg H, Dage J (2023) Blood biomarkers for Alzheimer���s disease in clinical practice and trials. Nat Aging 3:506���519. https://doi.org/10.1038/s43587-023-00403-3 [DOI: 10.1038/s43587-023-00403-3]
  144. Harris SS, Wolf F, Strooper BD, Busche MA (2020) Tipping the scales: peptide-dependent dysregulation of neural circuit dynamics in Alzheimer���s disease. Neuron 107:417���435. https://doi.org/10.1016/j.neuron.2020.06.005 [DOI: 10.1016/j.neuron.2020.06.005]
  145. Harwood DG, Kalechstein A, Barker WW et al (2010) The effect of alcohol and tobacco consumption, and apolipoprotein E genotype, on the age of onset in Alzheimer���s disease. Int J Geriatr Psychiatry 25:511���518. https://doi.org/10.1002/gps.2372 [DOI: 10.1002/gps.2372]
  146. Heilig M, Egli M, Crabbe JC, Becker HC (2010) REVIEW: Acute withdrawal, protracted abstinence and negative affect in alcoholism: are they linked? Addict Biol 15:169���184. https://doi.org/10.1111/j.1369-1600.2009.00194.x [DOI: 10.1111/j.1369-1600.2009.00194.x]
  147. Heneka MT, Kummer MP, Stutz A et al (2013) NLRP3 is activated in Alzheimer���s disease and contributes to pathology in APP/PS1 mice. Nature 493:674���678. https://doi.org/10.1038/nature11729 [DOI: 10.1038/nature11729]
  148. Hern��ndez JA, L��pez-S��nchez RC, Rend��n-Ram��rez A (2016) Lipids and oxidative stress associated with ethanol-induced neurological damage. Oxidative Med Cell Longev 2016:1543809. https://doi.org/10.1155/2016/1543809 [DOI: 10.1155/2016/1543809]
  149. Hershey LA, Lipton RB (2019) Naproxen for presymptomatic Alzheimer disease: Is this the end, or shall we try again? Neurology 92:829���830. https://doi.org/10.1212/wnl.0000000000007233 [DOI: 10.1212/wnl.0000000000007233]
  150. Heymann D, Stern Y, Cosentino S et al (2016) The association between alcohol use and the progression of Alzheimer���s disease. Curr Alzheimer Res 13:1356���1362. https://doi.org/10.2174/1567205013666160603005035 [DOI: 10.2174/1567205013666160603005035]
  151. Hickman S, Izzy S, Sen P et al (2018) Microglia in neurodegeneration. Nat Neurosci 21:1359���1369. https://doi.org/10.1038/s41593-018-0242-x [DOI: 10.1038/s41593-018-0242-x]
  152. Hoffman JL, Faccidomo S, Kim M et al (2019) Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer���s disease. Int Rev Neurobiol 148:169���230. https://doi.org/10.1016/bs.irn.2019.10.017 [DOI: 10.1016/bs.irn.2019.10.017]
  153. Hole KL, Zhu B, Huggon L et al (2024) TauP301L disengages from the proteosome core complex and neurogranin coincident with enhanced neuronal network excitability. Cell Death Dis 15:429. https://doi.org/10.1038/s41419-024-06815-2 [DOI: 10.1038/s41419-024-06815-2]
  154. Holmes BB, Furman JL, Mahan TE et al (2014) Proteopathic tau seeding predicts tauopathy in vivo. Proc Natl Acad Sci USA 111:E4376���E4385. https://doi.org/10.1073/pnas.1411649111 [DOI: 10.1073/pnas.1411649111]
  155. Horvath AA, Papp A, Zsuffa J et al (2021) Subclinical epileptiform activity accelerates the progression of Alzheimer���s disease: A long-term EEG study. Clin Neurophysiol 132:1982���1989. https://doi.org/10.1016/j.clinph.2021.03.050 [DOI: 10.1016/j.clinph.2021.03.050]
  156. Howarth C, Gleeson P, Attwell D (2012) Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab 32:1222���1232. https://doi.org/10.1038/jcbfm.2012.35 [DOI: 10.1038/jcbfm.2012.35]
  157. Huang Y, Mahley RW (2014) Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer���s diseases. Neurobiol Dis 72(Pt A):3���12. https://doi.org/10.1016/j.nbd.2014.08.025 [DOI: 10.1016/j.nbd.2014.08.025]
  158. Huang ZJ, Paul A (2019) The diversity of GABAergic neurons and neural communication elements. Nat Rev Neurosci 20:563���572. https://doi.org/10.1038/s41583-019-0195-4 [DOI: 10.1038/s41583-019-0195-4]
  159. Huang AR, Strombotne KL, Horner EM, Lapham SJ (2018) Adolescent cognitive aptitudes and later-in-life Alzheimer disease and related disorders. JAMA Netw Open 1:e181726. https://doi.org/10.1001/jamanetworkopen.2018.1726 [DOI: 10.1001/jamanetworkopen.2018.1726]
  160. Huang S, White DR, Marinkovic K (2022) Alterations of theta power and synchrony during encoding in young adult binge drinkers: Subsequent memory effects associated with retrieval after 48 h and 6 months. Front Psychol 13:1061016. https://doi.org/10.3389/fpsyg.2022.1061016 [DOI: 10.3389/fpsyg.2022.1061016]
  161. Hunsberger HC, Rudy CC, Batten SR et al (2015) P301L tau expression affects glutamate release and clearance in the hippocampal trisynaptic pathway. JNC 132:169���182. https://doi.org/10.1111/jnc.12967 [DOI: 10.1111/jnc.12967]
  162. Imbimbo BP, Solfrizzi V, Panza F (2010) Are NSAIDs useful to treat Alzheimer���s disease or mild cognitive impairment? Front Aging Neurosci 2:19. https://doi.org/10.3389/fnagi.2010.00019 [DOI: 10.3389/fnagi.2010.00019]
  163. in���t Veld BA, Ruitenberg A, Hofman A et al (2001) Nonsteroidal antiinflammatory drugs and the risk of alzheimer���s disease. N Engl J Med 345:1515���1521. https://doi.org/10.1056/nejmoa010178 [DOI: 10.1056/nejmoa010178]
  164. Ionescu-Tucker A, Cotman CW (2021) Emerging roles of oxidative stress in brain aging and Alzheimer���s disease. Neurobiol Aging 107:86���95. https://doi.org/10.1016/j.neurobiolaging.2021.07.014 [DOI: 10.1016/j.neurobiolaging.2021.07.014]
  165. Irizarry MC, Jin S, He F et al (2012) Incidence of new-onset seizures in mild to moderate Alzheimer disease. Arch Neurol 69:368���372. https://doi.org/10.1001/archneurol.2011.830 [DOI: 10.1001/archneurol.2011.830]
  166. Ising C, Venegas C, Zhang S et al (2019) NLRP3 inflammasome activation drives tau pathology. Nature 575:669���673. https://doi.org/10.1038/s41586-019-1769-z [DOI: 10.1038/s41586-019-1769-z]
  167. Jack CR, Bennett DA, Blennow K et al (2018) NIA-AA Research Framework: Toward a biological definition of Alzheimer���s disease. Alzheimers Dement 14:535���562. https://doi.org/10.1016/j.jalz.2018.02.018 [DOI: 10.1016/j.jalz.2018.02.018]
  168. Janelidze S, Mattsson N, Palmqvist S et al (2020) Plasma P-tau181 in Alzheimer���s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer���s dementia. Nat Med 26:379���386. https://doi.org/10.1038/s41591-020-0755-1 [DOI: 10.1038/s41591-020-0755-1]
  169. Jansen IE, Savage JE, Watanabe K et al (2019) Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer���s disease risk. Nat Genet 51:404���413. https://doi.org/10.1038/s41588-018-0311-9 [DOI: 10.1038/s41588-018-0311-9]
  170. Javed E, Su��rez-M��ndez I, Susi G et al (2022) E/I unbalance and aberrant oscillation dynamics predict preclinical Alzheimer���s disease. Biorxiv 2022(12):22.521549. https://doi.org/10.1101/2022.12.22.521549 [DOI: 10.1101/2022.12.22.521549]
  171. Jeon KH, Han K, Jeong S-M et al (2023) Changes in alcohol consumption and risk of dementia in a nationwide cohort in South Korea. JAMA Netw Open 6:e2254771. https://doi.org/10.1001/jamanetworkopen.2022.54771 [DOI: 10.1001/jamanetworkopen.2022.54771]
  172. Jha SK, Jha NK, Kumar D et al (2017) Linking mitochondrial dysfunction, metabolic syndrome and stress signaling in Neurodegeneration. Biochim Biophys Acta (BBA) Mol Basis Dis 1863:1132���1146. https://doi.org/10.1016/j.bbadis.2016.06.015 [DOI: 10.1016/j.bbadis.2016.06.015]
  173. Jiang S, Maphis NM, Binder J et al (2021) Proteopathic tau primes and activates interleukin-1�� via myeloid-cell-specific MyD88- and NLRP3-ASC-inflammasome pathway. Cell Rep 36:109720. https://doi.org/10.1016/j.celrep.2021.109720 [DOI: 10.1016/j.celrep.2021.109720]
  174. Jin JJ, Kim HD, Maxwell JA et al (2008) Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer���s disease. J Neuroinflammation 5:23. https://doi.org/10.1186/1742-2094-5-23 [DOI: 10.1186/1742-2094-5-23]
  175. Jorfi M, Maaser-Hecker A, Tanzi RE (2023) The neuroimmune axis of Alzheimer���s disease. Genome Med 15:6. https://doi.org/10.1186/s13073-023-01155-w [DOI: 10.1186/s13073-023-01155-w]
  176. Kamondi A, Grigg-Damberger M, L��scher W et al (2024) Epilepsy and epileptiform activity in late-onset Alzheimer disease: clinical and pathophysiological advances, gaps and conundrums. Nat Rev Neurol 20:162���182. https://doi.org/10.1038/s41582-024-00932-4 [DOI: 10.1038/s41582-024-00932-4]
  177. Kane CJ, Phelan KD, Douglas JC et al (2013) Effects of ethanol on immune response in the brain: region-specific changes in aged mice. J Neuroinflammation 10:1���4. https://doi.org/10.1186/1742-2094-10-66 [DOI: 10.1186/1742-2094-10-66]
  178. Kang S, Hayashi Y, Bruyns-Haylett M et al (2020) Model-predicted balance between neural excitation and inhibition was maintained despite of age-related decline in sensory evoked local field potential in rat barrel cortex. Front Syst Neurosci 14:24. https://doi.org/10.3389/fnsys.2020.00024 [DOI: 10.3389/fnsys.2020.00024]
  179. Karikari TK, Pascoal TA, Ashton NJ et al (2020) Blood phosphorylated tau 181 as a biomarker for Alzheimer���s disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol 19:422���433. https://doi.org/10.1016/s1474-4422(20)30071-5 [DOI: 10.1016/s1474-4422(20)30071-5]
  180. Katzov H, Chalmers K, Palmgren J et al (2004) Genetic variants of ABCA1 modify Alzheimer disease risk and quantitative traits related to beta-amyloid metabolism. Hum Mutat 23:358���367. https://doi.org/10.1002/humu.20012 [DOI: 10.1002/humu.20012]
  181. Kaufman SK, Thomas TL, Tredici KD et al (2017) Characterization of tau prion seeding activity and strains from formaldehyde-fixed tissue. Acta Neuropathologica Commun 5:41. https://doi.org/10.1186/s40478-017-0442-8 [DOI: 10.1186/s40478-017-0442-8]
  182. Kaufman SK, Tredici KD, Thomas TL et al (2018) Tau seeding activity begins in the transentorhinal/entorhinal regions and anticipates phospho-tau pathology in Alzheimer���s disease and PART. Acta Neuropathol 136:57���67. https://doi.org/10.1007/s00401-018-1855-6 [DOI: 10.1007/s00401-018-1855-6]
  183. Kekkonen V, Kallioniemi E, Kaarre O et al (2021) Heavy drinking from adolescence to young adulthood is associated with an altered cerebellum. Alcohol 92:35���40. https://doi.org/10.1016/j.alcohol.2021.02.002 [DOI: 10.1016/j.alcohol.2021.02.002]
  184. Keren-Shaul H, Spinrad A, Weiner A et al (2017) A unique microglia type associated with restricting development of Alzheimer���s disease. Cell 169:1276���1290 e17. https://doi.org/10.1016/j.cell.2017.05.018 [DOI: 10.1016/j.cell.2017.05.018]
  185. Keyes KM, Jager J, Mal-Sarkar T et al (2019) Is there a recent epidemic of women���s drinking? A critical review of national studies. Alcohol Clin Exp Res 43:1344���1359. https://doi.org/10.1111/acer.14082 [DOI: 10.1111/acer.14082]
  186. Khan KM, Rosa GB-DL, Biggerstaff N et al (2023) Adolescent ethanol drinking promotes hyperalgesia, neuroinflammation and serotonergic deficits in mice that persist into adulthood. Brain Behav Immun 107:419���431. https://doi.org/10.1016/j.bbi.2022.07.160 [DOI: 10.1016/j.bbi.2022.07.160]
  187. Kim DW, Tu KJ, Wei A et al (2022) Amyloid-beta and tau pathologies act synergistically to induce novel disease stage-specific microglia subtypes. Mol Neurodegener 17:83. https://doi.org/10.1186/s13024-022-00589-x [DOI: 10.1186/s13024-022-00589-x]
  188. Kivim��ki M, Singh-Manoux A, Batty GD et al (2020) Association of alcohol-induced loss of consciousness and overall alcohol consumption with risk for dementia. JAMA Netw Open 3:e2016084. https://doi.org/10.1001/jamanetworkopen.2020.16084 [DOI: 10.1001/jamanetworkopen.2020.16084]
  189. Klohs J (2020) An integrated view on vascular dysfunction in Alzheimer���s disease. Neurodegener Dis 19:109���127. https://doi.org/10.1159/000505625 [DOI: 10.1159/000505625]
  190. Knopman DS, Amieva H, Petersen RC et al (2021) Alzheimer disease. Nat Rev Dis Primers 7:33. https://doi.org/10.1038/s41572-021-00269-y [DOI: 10.1038/s41572-021-00269-y]
  191. Kobylecki C, Langheinrich T, Hinz R et al (2015) 18F-florbetapir PET in patients with frontotemporal dementia and Alzheimer disease. J Nucl Med 56:386���391. https://doi.org/10.2967/jnumed.114.147454 [DOI: 10.2967/jnumed.114.147454]
  192. Koch M, Fitzpatrick AL, Rapp SR et al (2019) Alcohol consumption and risk of dementia and cognitive decline among older adults with or without mild cognitive impairment. JAMA Netw Open 2:e1910319. https://doi.org/10.1001/jamanetworkopen.2019.10319 [DOI: 10.1001/jamanetworkopen.2019.10319]
  193. Koob GF, Volkow ND (2016) Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 3:760���773. https://doi.org/10.1016/s2215-0366(16)00104-8 [DOI: 10.1016/s2215-0366(16)00104-8]
  194. Kopeikina KJ, Carlson GA, Pitstick R et al (2011) Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human Alzheimer���s disease brain. Am J Pathol 179:2071���2082. https://doi.org/10.1016/j.ajpath.2011.07.004 [DOI: 10.1016/j.ajpath.2011.07.004]
  195. Korczyn AD, Grinberg LT (2024) Is Alzheimer disease a disease? Nat Rev Neurol 20:245���251. https://doi.org/10.1038/s41582-024-00940-4 [DOI: 10.1038/s41582-024-00940-4]
  196. Koss DJ, Jones G, Cranston A et al (2016) Soluble pre-fibrillar tau and ��-amyloid species emerge in early human Alzheimer���s disease and track disease progression and cognitive decline. Acta Neuropathol 132:875���895. https://doi.org/10.1007/s00401-016-1632-3 [DOI: 10.1007/s00401-016-1632-3]
  197. Kotilinek LA, Westerman MA, Wang Q et al (2008) Cyclooxygenase-2 inhibition improves amyloid-��-mediated suppression of memory and synaptic plasticity. Brain 131:651���664. https://doi.org/10.1093/brain/awn008 [DOI: 10.1093/brain/awn008]
  198. Kudo T, Takuwa H, Takahashi M et al (2023) Selective dysfunction of fast-spiking inhibitory interneurons and disruption of perineuronal nets in a tauopathy mouse model. iScience 26:106342. https://doi.org/10.1016/j.isci.2023.106342 [DOI: 10.1016/j.isci.2023.106342]
  199. Kvartsberg H, Hanes J, Benedet AL et al (2020) Quantification of tau phosphorylated at threonine 217 using a novel ultrasensitive immunoassay distinguishes Alzheimer���s disease from healthy controls. Alzheimers Dement 16. https://doi.org/10.1002/alz.043467
  200. Lam AD, Sarkis RA, Pellerin KR et al (2020) Association of epileptiform abnormalities and seizures in Alzheimer disease. Neurology 95:e2259���e2270. https://doi.org/10.1212/wnl.0000000000010612 [DOI: 10.1212/wnl.0000000000010612]
  201. Langballe EM, Ask H, Holmen J et al (2015) Alcohol consumption and risk of dementia up to 27 years later in a large, population-based sample: the HUNT study, Norway. Eur J Epidemiol 30:1049���1056. https://doi.org/10.1007/s10654-015-0029-2 [DOI: 10.1007/s10654-015-0029-2]
  202. Lanoisel��e HM, Nicolas G, Wallon D et al (2017) APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases. PLoS Med 14:e1002270. https://doi.org/10.1371/journal.pmed.1002270 [DOI: 10.1371/journal.pmed.1002270]
  203. Lauterborn JC, Scaduto P, Cox CD et al (2021) Increased excitatory to inhibitory synaptic ratio in parietal cortex samples from individuals with Alzheimer���s disease. Nat Commun 12:2603. https://doi.org/10.1038/s41467-021-22742-8 [DOI: 10.1038/s41467-021-22742-8]
  204. Lee JH, Yang DS, Goulbourne CN et al (2022) Faulty autolysosome acidification in Alzheimer���s disease mouse models induces autophagic build-up of Abeta in neurons, yielding senile plaques. Nat Neurosci 25:688���701. https://doi.org/10.1038/s41593-022-01084-8 [DOI: 10.1038/s41593-022-01084-8]
  205. Lees B, Meredith LR, Kirkland AE et al (2020) Effect of alcohol use on the adolescent brain and behavior. Pharmacol Biochem Behav 192:172906. https://doi.org/10.1016/j.pbb.2020.172906 [DOI: 10.1016/j.pbb.2020.172906]
  206. Leuzy A, Mattsson-Carlgren N, Palmqvist S et al (2022) Blood-based biomarkers for Alzheimer���s disease. Embo Mol Med 14:e14408. https://doi.org/10.15252/emmm.202114408 [DOI: 10.15252/emmm.202114408]
  207. Li D, Mielke MM (2019) An update on blood-based markers of Alzheimer���s disease using the SiMoA platform. Neurology Ther 8:73���82. https://doi.org/10.1007/s40120-019-00164-5 [DOI: 10.1007/s40120-019-00164-5]
  208. Li X-L, Hu N, Tan M-S et al (2014) Behavioral and psychological symptoms in Alzheimer���s disease. Biomed Res Int 2014:1���9. https://doi.org/10.1155/2014/927804 [DOI: 10.1155/2014/927804]
  209. Li H, Guglielmetti C, Sei YJ et al (2023) Neurons require glucose uptake and glycolysis in vivo. Cell Rep 42. https://doi.org/10.1016/j.celrep.2023.112335
  210. Lisdahl KM, Sher KJ, Conway KP et al (2018) Adolescent brain cognitive development (ABCD) study: Overview of substance use assessment methods. Dev Cogn Neurosci 32:80���96. https://doi.org/10.1016/j.dcn.2018.02.007 [DOI: 10.1016/j.dcn.2018.02.007]
  211. Lisgaras CP, Scharfman HE (2022) High frequency oscillations (250-500Hz) in animal models of Alzheimer���s disease and two animal models of epilepsy. Epilepsia. https://doi.org/10.1111/epi.17462
  212. Lisgaras CP, Scharfman HE (2023) Interictal spikes in Alzheimer���s disease: Preclinical evidence for dominance of the dentate gyrus and cholinergic control by the medial septum. Neurobiol Dis 187:106294. https://doi.org/10.1016/j.nbd.2023.106294 [DOI: 10.1016/j.nbd.2023.106294]
  213. Liu F, Gong C-X (2008) Tau exon 10 alternative splicing and tauopathies. Mol Neurodegener 3:8. https://doi.org/10.1186/1750-1326-3-8 [DOI: 10.1186/1750-1326-3-8]
  214. Liu L, Drouet V, Wu JW et al (2012) Trans-synaptic spread of tau pathology in vivo. PLoS One 7:e31302. https://doi.org/10.1371/journal.pone.0031302 [DOI: 10.1371/journal.pone.0031302]
  215. Liu C-C, Liu C-C, Kanekiyo T et al (2013) Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9:106���118. https://doi.org/10.1038/nrneurol.2012.263 [DOI: 10.1038/nrneurol.2012.263]
  216. Liu W, Vetreno RP, Crews FT (2021) Hippocampal TNF-death receptors, caspase cell death cascades, and IL-8 in alcohol use disorder. Mol Psychiatry 26:2254���2262. https://doi.org/10.1038/s41380-020-0698-4 [DOI: 10.1038/s41380-020-0698-4]
  217. Livingston G, Huntley J, Sommerlad A et al (2020) Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396:413���446. https://doi.org/10.1016/s0140-6736(20)30367-6 [DOI: 10.1016/s0140-6736(20)30367-6]
  218. Long JM, Holtzman DM (2019) Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179:312���339. https://doi.org/10.1016/j.cell.2019.09.001 [DOI: 10.1016/j.cell.2019.09.001]
  219. Luciunaite A, McManus RM, Jankunec M et al (2020) Soluble Abeta oligomers and protofibrils induce NLRP3 inflammasome activation in microglia. J Neurochem 155:650���661. https://doi.org/10.1111/jnc.14945 [DOI: 10.1111/jnc.14945]
  220. Lue L-F, Walker DG, Brachova L et al (2001) Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer���s disease: identification of a cellular activation mechanism. Exp Neurol 171:29���45. https://doi.org/10.1006/exnr.2001.7732 [DOI: 10.1006/exnr.2001.7732]
  221. Mace S, Cousin E, Ricard S et al (2005) ABCA2 is a strong genetic risk factor for early-onset Alzheimer���s disease. Neurobiol Dis 18:119���125. https://doi.org/10.1016/j.nbd.2004.09.011 [DOI: 10.1016/j.nbd.2004.09.011]
  222. Maghsudi H, Sch��tze M, Maudsley AA et al (2020) Age-related brain metabolic changes up to seventh decade in healthy humans. Clin Neuroradiol 30:581���589. https://doi.org/10.1007/s00062-019-00814-z [DOI: 10.1007/s00062-019-00814-z]
  223. Majerova P, Zilkova M, Kazmerova Z et al (2014) Microglia display modest phagocytic capacity for extracellular tau oligomers. J Neuroinflammation 11:161. https://doi.org/10.1186/s12974-014-0161-z [DOI: 10.1186/s12974-014-0161-z]
  224. Malpetti M, Kievit RA, Passamonti L et al (2020) Microglial activation and tau burden predict cognitive decline in Alzheimer���s disease. Brain 143:awaa088. https://doi.org/10.1093/brain/awaa088 [DOI: 10.1093/brain/awaa088]
  225. Maphis NM, Morningstar MD, Linsenbardt DN (2024) Binge drinking in a mouse model of AD leads to unique cortical neurophysiological alterations. Poster presented at the Research Society on Alcohol conference, Minneapolis, MN, Tuesday, June 25, 2024. https://onlinelibrary.wiley.com/doi/epdf/10.1111/acer.15318
  226. Marinkovic K, Myers ABA, Arienzo D et al (2022) Cortical GABA levels are reduced in young adult binge drinkers: Association with recent alcohol consumption and sex. NeuroImage: Clin 35:103091. https://doi.org/10.1016/j.nicl.2022.103091 [DOI: 10.1016/j.nicl.2022.103091]
  227. Markram H, Toledo-Rodriguez M, Wang Y et al (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793���807. https://doi.org/10.1038/nrn1519 [DOI: 10.1038/nrn1519]
  228. Marshall SA, McClain JA, Kelso ML et al (2013) Microglial activation is not equivalent to neuroinflammation in alcohol-induced neurodegeneration: The importance of microglia phenotype. Neurobiol Dis 54:239���251. https://doi.org/10.1016/j.nbd.2012.12.016 [DOI: 10.1016/j.nbd.2012.12.016]
  229. Marsland P, Vore AS, DaPrano E et al (2022) Sex-specific effects of ethanol consumption in older Fischer 344 rats on microglial dynamics and A��(1-42) accumulation. Alcohol. https://doi.org/10.1016/j.alcohol.2022.08.013
  230. Mart��nez A, Carmona M, Portero-Otin M et al (2008) Type-dependent oxidative damage in frontotemporal lobar degeneration. J Neuropathol Exp Neurol 67:1122���1136. https://doi.org/10.1097/nen.0b013e31818e06f3 [DOI: 10.1097/nen.0b013e31818e06f3]
  231. Mathys H, Adaikkan C, Gao F et al (2017) Temporal tracking of microglia activation in neurodegeneration at single-cell resolution. Cell Rep 21:366���380. https://doi.org/10.1016/j.celrep.2017.09.039 [DOI: 10.1016/j.celrep.2017.09.039]
  232. Matsushita S, Miyakawa T, Maesato H et al (2008) Elevated cerebrospinal fluid tau protein levels in Wernicke���s encephalopathy. Alcohol Clin Exp Res 32:1091���1095. https://doi.org/10.1111/j.1530-0277.2008.00671.x [DOI: 10.1111/j.1530-0277.2008.00671.x]
  233. Mattson MP (2020) Involvement of GABAergic interneuron dysfunction and neuronal network hyperexcitability in Alzheimer���s disease: Amelioration by metabolic switching. Int Rev Neurobiol 154:191���205. https://doi.org/10.1016/bs.irn.2020.01.006 [DOI: 10.1016/bs.irn.2020.01.006]
  234. McAlpine FE, Lee J-K, Harms AS et al (2009) Inhibition of soluble TNF signaling in a mouse model of Alzheimer���s disease prevents pre-plaque amyloid-associated neuropathology. Neurobiol Dis 34:163���177. https://doi.org/10.1016/j.nbd.2009.01.006 [DOI: 10.1016/j.nbd.2009.01.006]
  235. McDonald TS, Lerskiatiphanich T, Woodruff TM et al (2023) Potential mechanisms to modify impaired glucose metabolism in neurodegenerative disorders. J Cereb Blood Flow Metab 43:26���43. https://doi.org/10.1177/0271678x221135061 [DOI: 10.1177/0271678x221135061]
  236. McMillan P, Korvatska E, Poorkaj P et al (2008) Tau isoform regulation is region- and cell-specific in mouse brain. J Comp Neurol 511:788���803. https://doi.org/10.1002/cne.21867 [DOI: 10.1002/cne.21867]
  237. Mergenthaler P, Lindauer U, Dienel GA, Meisel A (2013) Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 36:587���597. https://doi.org/10.1016/j.tins.2013.07.001 [DOI: 10.1016/j.tins.2013.07.001]
  238. Meyer P-F, Tremblay-Mercier J, Leoutsakos J et al (2019) INTREPAD: A randomized trial of naproxen to slow progress of presymptomatic Alzheimer disease. Neurology 92:e2070���e2080. https://doi.org/10.1212/wnl.0000000000007232 [DOI: 10.1212/wnl.0000000000007232]
  239. Meyer SD, Schaeverbeke J, Gille B et al (2020a) Comparison of two analytical platforms for blood-based surrogate biomarkers of amyloid pathology. Alzheimers Dement 16. https://doi.org/10.1002/alz.045110
  240. Meyer SD, Schaeverbeke JM, Verberk IMW et al (2020b) Comparison of ELISA- and SIMOA-based quantification of plasma A�� ratios for early detection of cerebral amyloidosis. Alzheimers Res Ther 12:162. https://doi.org/10.1186/s13195-020-00728-w [DOI: 10.1186/s13195-020-00728-w]
  241. Miao J, Ma H, Yang Y et al (2023) Microglia in Alzheimer���s disease: pathogenesis, mechanisms, and therapeutic potentials. Front Aging Neurosci 15:1201982. https://doi.org/10.3389/fnagi.2023.1201982 [DOI: 10.3389/fnagi.2023.1201982]
  242. Mielke MM, Hagen CE, Xu J et al (2018) Plasma phospho-tau181 increases with Alzheimer���s disease clinical severity and is associated with tau- and amyloid-positron emission tomography. Alzheimers Dement J Alzheimers Assoc 14:989���997. https://doi.org/10.1016/j.jalz.2018.02.013 [DOI: 10.1016/j.jalz.2018.02.013]
  243. Mihic SJ, Harris RA (1995) Alcohol actions at the GABAA receptor/chloride channels complex. In: Deitrich R, Erwin G (eds) Pharmacological effects of ethanol on the nervous system. CRC, Boca Raton, FL, pp 51���71
  244. Mintz CM, Knox J, Hartz SM et al (2023) Demographic differences in the cascade of care for unhealthy alcohol use: A cross-sectional analysis of data from the 2015���2019 National Survey on Drug Use and Health. Alcohol Clin Exp Res 47:1890���1903. https://doi.org/10.1111/acer.15176 [DOI: 10.1111/acer.15176]
  245. Moceri VM, Kukull WA, Emanuel I et al (2000) Early-life risk factors and the development of Alzheimer���s disease. Neurology 54:415���415. https://doi.org/10.1212/wnl.54.2.415 [DOI: 10.1212/wnl.54.2.415]
  246. Mohamed N, Herrou T, Plouffe V et al (2013) Spreading of tau pathology in Alzheimer���s disease by cell-to-cell transmission. Eur J Neurosci 37:1939���1948. https://doi.org/10.1111/ejn.12229 [DOI: 10.1111/ejn.12229]
  247. Montesinos J, Alfonso-Loeches S, Guerri C (2016) Impact of the innate immune response in the actions of ethanol on the central nervous system. Alcohol Clin Exp Res 40:2260���2270. https://doi.org/10.1111/acer.13208 [DOI: 10.1111/acer.13208]
  248. Montoliu C, Sancho-Tello M, Azorin I et al (1995) Ethanol increases cytochrome P4502E1 and induces oxidative stress in astrocytes. J Neurochem 65:2561���2570 [DOI: 10.1046/j.1471-4159.1995.65062561.x]
  249. Moriyama Y, Mimura M, Kato M, Kashima H (2006) Primary alcoholic dementia and alcohol-related dementia. Psychogeriatrics 6:114���118. https://doi.org/10.1111/j.1479-8301.2006.00168.x [DOI: 10.1111/j.1479-8301.2006.00168.x]
  250. Mosconi L, Tsui WH, Herholz K et al (2008) Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer���s disease, and other dementias. J Nucl Med 49:390���398. https://doi.org/10.2967/jnumed.107.045385 [DOI: 10.2967/jnumed.107.045385]
  251. Moscoso A, Grothe MJ, Ashton NJ et al (2021) Longitudinal associations of blood phosphorylated Tau181 and neurofilament light chain with neurodegeneration in Alzheimer disease. JAMA Neurol 78. https://doi.org/10.1001/jamaneurol.2020.4986
  252. M��ykkynen T, Korpi ER (2012) Acute effects of ethanol on glutamate receptors. Basic Clin Pharmacol Toxicol 111:4���13. https://doi.org/10.1111/j.1742-7843.2012.00879.x [DOI: 10.1111/j.1742-7843.2012.00879.x]
  253. Mufson EJ, Malek-Ahmadi M, Snyder N et al (2016) Braak stage and trajectory of cognitive decline innoncognitively impaired elders. Neurobiol Aging43:101���110. https://doi.org/10.1016/j.neurobiolaging.2016.03.003
  254. Mukamal KJ, Kuller LH, Fitzpatrick AL et al (2003) Prospective study of alcohol consumption and risk of dementia in older adults. JAMA 289:1405���1413. https://doi.org/10.1001/jama.289.11.1405 [DOI: 10.1001/jama.289.11.1405]
  255. Nakamura K, Iwahashi K, Furukawa A et al (2003) Acetaldehyde adducts in the brain of alcoholics. Arch Toxicol 77:591���593 [DOI: 10.1007/s00204-003-0465-8]
  256. National Institute on Alcohol Abuse and Alcoholism (NIAAA) (2024) Alcohol���s effects on health. US Department of Health and Human Services. https://www.niaaa.nih.gov/alcohols-effects-health . Accessed 15 July 2024
  257. National Survey on Drug Use and Health (NSDUH) (2021) Substance Abuse and Mental Health Services Administration, US Government. https://www.samhsa.gov/data/release/2021-national-survey-drug-use-and-healthnsduh-releases . Accessed 15 July 2024
  258. National Survey on Drug Use and Health (NSDUH) (2022/2012) Substance Abuse and Mental Health Services Administration, US Government. https://www.samhsa.gov/data/report/2022-nsduh-detailed-tables . Accessed 15 July 2024
  259. National Survey on Drug Use and Health (NSDUH) (2023) Substance Abuse and Mental Health Services Administration, US Government. https://www.samhsa.gov/data/report/2023-nsduh-detailed-tables . Accessed 15 July 2024
  260. Nilssen ES, Doan TP, Nigro MJ et al (2019) Neurons and networks in the entorhinal cortex: A reappraisal of the lateral and medial entorhinal subdivisions mediating parallel cortical pathways. Hippocampus 29:1238���1254. https://doi.org/10.1002/hipo.23145 [DOI: 10.1002/hipo.23145]
  261. Nixon RA (2013) The role of autophagy in neurodegenerative disease. Nat Med 19:983���997. https://doi.org/10.1038/nm.3232 [DOI: 10.1038/nm.3232]
  262. Nixon K, Kim DH, Potts EN et al (2008) Distinct cell proliferation events during abstinence after alcohol dependence: Microglia proliferation precedes neurogenesis. Neurobiol Dis 31:218���229. https://doi.org/10.1016/j.nbd.2008.04.009 [DOI: 10.1016/j.nbd.2008.04.009]
  263. Noble W, Garwood C, Stephenson J et al (2009) Minocycline reduces the development of abnormal tau species in models of Alzheimer���s disease. FASEB J 23:739���750. https://doi.org/10.1096/fj.08-113795 [DOI: 10.1096/fj.08-113795]
  264. Noble W, Hanger DP, Miller CCJ, Lovestone S (2013) The importance of tau phosphorylation for neurodegenerative diseases. Front Neurol 4:83. https://doi.org/10.3389/fneur.2013.00083 [DOI: 10.3389/fneur.2013.00083]
  265. Norden DM, Godbout JP (2013) Review: Microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathol Appl Neurobiol 39:19���34. https://doi.org/10.1111/j.1365-2990.2012.01306.x [DOI: 10.1111/j.1365-2990.2012.01306.x]
  266. Novikova G, Kapoor M, Tcw J et al (2019) Integration of Alzheimer���s disease genetics and myeloid cell genomics identifies novel causal variants, regulatory elements, genes and pathways. bioRxiv. https://doi.org/10.1101/694281
  267. Ohara S, Rannap M, Tsutsui K-I et al (2023) Hippocampal-medial entorhinal circuit is differently organized along the dorsoventral axis in rodents. Cell Rep 42:112001. https://doi.org/10.1016/j.celrep.2023.112001 [DOI: 10.1016/j.celrep.2023.112001]
  268. Olsen RW, Liang J (2017) Role of GABAA receptors in alcohol use disorders suggested by chronic intermittent ethanol (CIE) rodent model. Mol Brain 10:45. https://doi.org/10.1186/s13041-017-0325-8 [DOI: 10.1186/s13041-017-0325-8]
  269. Olsson B, Lautner R, Andreasson U et al (2016) CSF and blood biomarkers for the diagnosis of Alzheimer���s disease: a systematic review and meta-analysis. Lancet Neurol 15:673���684. https://doi.org/10.1016/s1474-4422(16)00070-3 [DOI: 10.1016/s1474-4422(16)00070-3]
  270. Orihuela R, McPherson CA, Harry GJ (2016) Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 173:649���665. https://doi.org/10.1111/bph.13139 [DOI: 10.1111/bph.13139]
  271. Ota M, Sato N, Nakata Y et al (2011) Relationship between apathy and diffusion tensor imaging metrics of the brain in Alzheimer���s disease: Relationship between apathy and DTI in AD. Int J Geriatr Psychiatry 27:722���726. https://doi.org/10.1002/gps.2779 [DOI: 10.1002/gps.2779]
  272. Oudman E, Oey MJ, Batjes D et al (2022) Wernicke-Korsakoff syndrome diagnostics and rehabilitation in the post-acute phase. Addict Neurosci 4:100043. https://doi.org/10.1016/j.addicn.2022.100043 [DOI: 10.1016/j.addicn.2022.100043]
  273. Palop JJ, Chin J, Roberson ED et al (2007) Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer���s disease. Neuron 55:697���711. https://doi.org/10.1016/j.neuron.2007.07.025 [DOI: 10.1016/j.neuron.2007.07.025]
  274. Pasantes-Morales H, Tuz K (2006) Volume changes in neurons: hyperexcitability and neuronal death. Contrib Nephrol 152:221���240. https://doi.org/10.1159/000096326 [DOI: 10.1159/000096326]
  275. Pascale A, Stephenson M, Barr P et al (2022) Exploring the relationships between adolescent alcohol misuse and later life health outcomes. Alcohol Clin Exp Res 46:1753���1765. https://doi.org/10.1111/acer.14917 [DOI: 10.1111/acer.14917]
  276. Pascual M, Calvo-Rodriguez M, N����ez L et al (2021) Toll-like receptors in neuroinflammation, neurodegeneration, and alcohol-induced brain damage. IUBMB Life 73:900���915 [DOI: 10.1002/iub.2510]
  277. Pati D, Marcinkiewcz CA, DiBerto JF et al (2020) Chronic intermittent ethanol exposure dysregulates a GABAergic microcircuit in the bed nucleus of the stria terminalis. Neuropharmacology 168:107759. https://doi.org/10.1016/j.neuropharm.2019.107759 [DOI: 10.1016/j.neuropharm.2019.107759]
  278. Pati D, Downs AM, McElligott ZA, Kash TL (2022) Chronic ethanol exposure modulates periaqueductal gray to extended amygdala dopamine circuit. J Neurosci 43:709���721. https://doi.org/10.1523/jneurosci.1219-22.2022 [DOI: 10.1523/jneurosci.1219-22.2022]
  279. Pedditzi E, Peters R, Beckett N (2016) The risk of overweight/obesity in mid-life and late life for the development of dementia: a systematic review and meta-analysis of longitudinal studies. Age Ageing 45:14���21. https://doi.org/10.1093/ageing/afv151 [DOI: 10.1093/ageing/afv151]
  280. Pelicao R, Santos MC, Freitas-Lima LC et al (2016) URB597 inhibits oxidative stress induced by alcohol binging in the prefrontal cortex of adolescent rats. Neurosci Lett 624:17���22. https://doi.org/10.1016/j.neulet.2016.04.068 [DOI: 10.1016/j.neulet.2016.04.068]
  281. Peric A, Annaert W (2015) Early etiology of Alzheimer���s disease: tipping the balance toward autophagy or endosomal dysfunction? Acta Neuropathol 129:363���381. https://doi.org/10.1007/s00401-014-1379-7 [DOI: 10.1007/s00401-014-1379-7]
  282. Peters R, Poulter R, Warner J et al (2008) Smoking, dementia and cognitive decline in the elderly, a systematic review. BMC Geriatr 8:36. https://doi.org/10.1186/1471-2318-8-36 [DOI: 10.1186/1471-2318-8-36]
  283. Petrache AL, Rajulawalla A, Shi A et al (2019) Aberrant excitatory���inhibitory synaptic mechanisms in entorhinal cortex microcircuits during the pathogenesis of Alzheimer���s disease. Cereb Cortex 29:bhz016. https://doi.org/10.1093/cercor/bhz016 [DOI: 10.1093/cercor/bhz016]
  284. Phillips RD, Bellis MDD, Brumback T et al (2021) Volumetric trajectories of hippocampal subfields and amygdala nuclei influenced by adolescent alcohol use and lifetime trauma. Transl Psychiatry 11:154. https://doi.org/10.1038/s41398-021-01275-0 [DOI: 10.1038/s41398-021-01275-0]
  285. Pinti M, Appay V, Campisi J et al (2016) Aging of the immune system: Focus on inflammation and vaccination. Eur J Immunol 46:2286���2301. https://doi.org/10.1002/eji.201546178 [DOI: 10.1002/eji.201546178]
  286. Polidori MC, Nelles G (2014) Antioxidant clinical trials in mild cognitive impairment and Alzheimer���s disease���challenges and perspectives. Curr Pharm Des 20:3083���3092. https://doi.org/10.2174/13816128113196660706 [DOI: 10.2174/13816128113196660706]
  287. Pooler AM, Phillips EC, Lau DH et al (2013) Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep 14:389���394. https://doi.org/10.1038/embor.2013.15 [DOI: 10.1038/embor.2013.15]
  288. Popova D, Sun J, Chow H, Hart RP (2024) A critical review of ethanol effects on neuronal firing: A metabolic perspective. Alcohol Clin Exp Res 48:450���458. https://doi.org/10.1111/acer.15266 [DOI: 10.1111/acer.15266]
  289. Provenzano F, P��rez MJ, Deleidi M (2021) Redefining microglial identity in health and disease at single-cell resolution. Trends Mol Med 27:47���59. https://doi.org/10.1016/j.molmed.2020.09.001 [DOI: 10.1016/j.molmed.2020.09.001]
  290. Qin L, Crews FT (2012a) NADPH oxidase and reactive oxygen species contribute to alcohol-induced microglial activation and neurodegeneration. J Neuroinflammation 9:5. https://doi.org/10.1186/1742-2094-9-5 [DOI: 10.1186/1742-2094-9-5]
  291. Qin L, Crews FT (2012b) Chronic ethanol increases systemic TLR3 agonist-induced neuroinflammation and neurodegeneration. J Neuroinflammation 9:130. https://doi.org/10.1186/1742-2094-9-130 [DOI: 10.1186/1742-2094-9-130]
  292. Qin L, Zou J, Barnett A et al (2021) TRAIL mediates neuronal death in AUD: a link between neuroinflammation and neurodegeneration. Int J Mol Sci 22:2547. https://doi.org/10.3390/ijms22052547 [DOI: 10.3390/ijms22052547]
  293. Qin W, Li F, Jia L et al (2022) Phosphorylated tau 181 serum levels predict Alzheimer���s disease in the preclinical stage. Front Aging Neurosci 14:900773. https://doi.org/10.3389/fnagi.2022.900773 [DOI: 10.3389/fnagi.2022.900773]
  294. Radulescu CI, Doostdar N, Zabouri N et al (2023) Age-related dysregulation of homeostatic control in neuronal microcircuits. Nat Neurosci 26:2158���2170. https://doi.org/10.1038/s41593-023-01451-z [DOI: 10.1038/s41593-023-01451-z]
  295. Rajan KB, Weuve J, Barnes LL et al (2021) Population estimate of people with clinical Alzheimer���s disease and mild cognitive impairment in the United States (2020���2060). Alzheimers Dement 17:1966���1975. https://doi.org/10.1002/alz.12362 [DOI: 10.1002/alz.12362]
  296. Rapoport SI (2003) Coupled reductions in brain oxidative phosphorylation and synaptic function can be quantified and staged in the course of Alzheimer disease. Neurotox Res 5:385���397. https://doi.org/10.1007/bf03033167 [DOI: 10.1007/bf03033167]
  297. Reddy SK, Husain K, Schlorff E et al (1999) Dose response of ethanol ingestion on antioxidant defense system in rat brain subcellular fractions. Neurotoxicology 20:977���988 [PMID: 10693979]
  298. Rehm J, Hasan OSM, Black SE et al (2019) Alcohol use and dementia: a systematic scoping review. Alzheimers Res Ther 11:1. https://doi.org/10.1186/s13195-018-0453-0 [DOI: 10.1186/s13195-018-0453-0]
  299. Rivers-Auty J, Mather AE, Peters R et al (2020) Anti-inflammatories in Alzheimer���s disease���potential therapy or spurious correlate? Brain Commun 2:fcaa109. https://doi.org/10.1093/braincomms/fcaa109 [DOI: 10.1093/braincomms/fcaa109]
  300. Roberson ED, Halabisky B, Yoo JW et al (2011) Amyloid-��/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer���s disease. J Neurosci 31:700���711. https://doi.org/10.1523/jneurosci.4152-10.2011 [DOI: 10.1523/jneurosci.4152-10.2011]
  301. Robert A, Sch��ll M, Vogels T (2021) Tau seeding mouse models with patient brain-derived aggregates. Int J Mol Sci 22:6132. https://doi.org/10.3390/ijms22116132 [DOI: 10.3390/ijms22116132]
  302. Rorbach-Dolata A, Piwowar A (2019) Neurometabolic evidence supporting the hypothesis of increased incidence of type 3 diabetes mellitus in the 21st century. Biomed Res Int 2019:1435276. https://doi.org/10.1155/2019/1435276 [DOI: 10.1155/2019/1435276]
  303. Rossano SM, Johnson AS, Smith A et al (2024) Microglia measured by TSPO PET are associated with Alzheimer���s disease pathology and mediate key steps in a disease progression model. Alzheimers Dement 20:2397���2407. https://doi.org/10.1002/alz.13699 [DOI: 10.1002/alz.13699]
  304. Ruan Z, Pathak D, Kalavai SV et al (2020) Alzheimer���s disease brain-derived extracellular vesicles spread tau pathology in interneurons. Brain 144:awaa376. https://doi.org/10.1093/brain/awaa376 [DOI: 10.1093/brain/awaa376]
  305. Sabia S, Fayosse A, Dumurgier J et al (2018) Alcohol consumption and risk of dementia: 23 year follow-up of Whitehall II cohort study. BMJ 362:k2927. https://doi.org/10.1136/bmj.k2927 [DOI: 10.1136/bmj.k2927]
  306. Salling MC, Skelly MJ, Avegno E et al (2018) Alcohol consumption during adolescence in a mouse model of binge drinking alters the intrinsic excitability and function of the prefrontal cortex through a reduction in the hyperpolarization-activated cation current. J Neurosci 38:6207���6222. https://doi.org/10.1523/jneurosci.0550-18.2018 [DOI: 10.1523/jneurosci.0550-18.2018]
  307. SAMHSA Center for Behavioral Health Statistics and Quality, National Survey on Drug Use and Health (2022) Table 5.9A���Alcohol use disorder in past year: among people aged 12 or older; by age group and demographic characteristics, numbers in thousands, 2021 and 2022
  308. Sanna PP, Cabrelle C, Kawamura T et al (2023) A history of repeated alcohol intoxication promotes cognitive impairment and gene expression signatures of disease progression in the 3xTg mouse model of Alzheimer���s disease. eneuro. https://doi.org/10.1523/eneuro.0456-22.2023
  309. Sarnowski C, Ghanbari M, Bis JC et al (2022) Meta-analysis of genome-wide association studies identifies ancestry-specific associations underlying circulating total tau levels. Commun Biol 5:336. https://doi.org/10.1038/s42003-022-03287-y [DOI: 10.1038/s42003-022-03287-y]
  310. Scaduto P, Lauterborn JC, Cox CD et al (2023) Functional excitatory to inhibitory synaptic imbalance and loss of cognitive performance in people with Alzheimer���s disease neuropathologic change. Acta Neuropathol 145:303���324. https://doi.org/10.1007/s00401-022-02526-0 [DOI: 10.1007/s00401-022-02526-0]
  311. Scarmeas N, Honig LS, Choi H et al (2009) Seizures in Alzheimer disease: who, when, and how common? Arch Neurol (Chicago) 66:992���997. https://doi.org/10.1001/archneurol.2009.130 [DOI: 10.1001/archneurol.2009.130]
  312. Scharfman HE (2012) Alzheimers disease and epilepsy: insight from animal models. Future Neurol 7:177���192. https://doi.org/10.2217/fnl.12.8 [DOI: 10.2217/fnl.12.8]
  313. Scheltens P, Strooper BD, Kivipelto M et al (2021) Alzheimer���s disease. Lancet 397:1577���1590. https://doi.org/10.1016/s0140-6736(20)32205-4 [DOI: 10.1016/s0140-6736(20)32205-4]
  314. Schwarzinger M, Pollock BG, Hasan OSM et al (2018) Contribution of alcohol use disorders to the burden of dementia in France 2008-13: a nationwide retrospective cohort study. Lancet Public Health 3:e124���e132. https://doi.org/10.1016/s2468-2667(18)30022-7 [DOI: 10.1016/s2468-2667(18)30022-7]
  315. Seabrook TJ, Jiang L, Maier M, Lemere CA (2006) Minocycline affects microglia activation, A�� deposition, and behavior in APP-tg mice. Glia 53:776���782. https://doi.org/10.1002/glia.20338 [DOI: 10.1002/glia.20338]
  316. Sears SM, Hewett SJ (2021) Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Exp Biol Med 246:1069���1083. https://doi.org/10.1177/1535370221989263 [DOI: 10.1177/1535370221989263]
  317. Shafighi K, Villeneuve S, Neto PR et al (2023) Social isolation is linked to classical risk factors of Alzheimer���s disease-related dementias. PLoS One 18:e0280471. https://doi.org/10.1371/journal.pone.0280471 [DOI: 10.1371/journal.pone.0280471]
  318. Shimojo M, Takuwa H, Takado Y et al (2020) Selective disruption of inhibitory synapses leading to neuronal hyperexcitability at an early stage of tau pathogenesis in a mouse model. J Neurosci 40:3491���3501. https://doi.org/10.1523/jneurosci.2880-19.2020 [DOI: 10.1523/jneurosci.2880-19.2020]
  319. Sienski G et al (2021) APOE4 disrupts intracellular lipid homeostasis in human iPSC-derived glia. Sci Transl Med 13(583):eaaz4564. https://doi.org/10.1126/scitranslmed.aaz4564
  320. ��imi�� G, Leko MB, Wray S et al (2016) Tau protein hyperphosphorylation and aggregation in Alzheimer���s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules 6:6. https://doi.org/10.3390/biom6010006 [DOI: 10.3390/biom6010006]
  321. Smailagic N, Lafortune L, Kelly S et al (2018) 18F-FDG PET for prediction of conversion to Alzheimer���s disease dementia in people with mild cognitive impairment: an updated systematic review of test accuracy. J Alzheimers Dis 64(4):1175���1194. https://doi.org/10.3233/jad-171125 [DOI: 10.3233/jad-171125]
  322. Solito E, Sastre M (2012) Microglia function in Alzheimer���s disease. Front Pharmacol 3:14. https://doi.org/10.3389/fphar.2012.00014 [DOI: 10.3389/fphar.2012.00014]
  323. Song M, Jin J, Lim JE et al (2011) TLR4 mutation reduces microglial activation, increases Abeta deposits and exacerbates cognitive deficits in a mouse model of Alzheimer���s disease. J Neuroinflammation 8:92. https://doi.org/10.1186/1742-2094-8-92 [DOI: 10.1186/1742-2094-8-92]
  324. Soula M, Maslarova A, Harvey RE et al (2023) Interictal epileptiform discharges affect memory in an Alzheimer���s disease mouse model. bioRxiv. https://doi.org/10.1101/2023.02.15.528683
  325. Spear LP (2000) The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev 24:417���463. https://doi.org/10.1016/s0149-7634(00)00014-2 [DOI: 10.1016/s0149-7634(00)00014-2]
  326. Spear L (2013) The teenage brain. Curr Dir Psychol Sci 22:152���157. https://doi.org/10.1177/0963721412472192 [DOI: 10.1177/0963721412472192]
  327. Spear LP (2018) Effects of adolescent alcohol consumption on the brain and behaviour. Nat Rev Neurosci 19:197���214. https://doi.org/10.1038/nrn.2018.10 [DOI: 10.1038/nrn.2018.10]
  328. Stamer K, Vogel R, Thies E et al (2002) Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 156:1051���1063. https://doi.org/10.1083/jcb.200108057 [DOI: 10.1083/jcb.200108057]
  329. Stirling DP, Koochesfahani KM, Steeves JD, Tetzlaff W (2005) Minocycline as a neuroprotective agent. Neuroscientist 11:308���322. https://doi.org/10.1177/1073858405275175 [DOI: 10.1177/1073858405275175]
  330. Strang KH, Golde TE, Giasson BI (2019) MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Lab Investig 99:912���928. https://doi.org/10.1038/s41374-019-0197-x [DOI: 10.1038/s41374-019-0197-x]
  331. Suh SW, Aoyama K, Chen Y et al (2003) Hypoglycemic neuronal death and cognitive impairment are prevented by poly(ADP-ribose) polymerase inhibitors administered after hypoglycemia. J Neurosci 23:10681���10690. https://doi.org/10.1523/jneurosci.23-33-10681.2003 [DOI: 10.1523/jneurosci.23-33-10681.2003]
  332. Szekely CA, Green RC, Breitner JCS et al (2008) No advantage of Ab42-lowering NSAIDs for prevention of Alzheimer dementia in six pooled cohort studies. Neurology 70:2291���2298. https://doi.org/10.1212/01.wnl.0000313933.17796.f6 [DOI: 10.1212/01.wnl.0000313933.17796.f6]
  333. Tabakoff B, Hoffman PL (1996) Alcohol addiction: an enigma among us. Neuron 16:909���912. https://doi.org/10.1016/s0896-6273(00)80113-0 [DOI: 10.1016/s0896-6273(00)80113-0]
  334. T��buas-Pereira M, Dur��es J, Lopes J et al (2019) Increased CSF tau is associated with a higher risk of seizures in patients with Alzheimer���s disease. Epilepsy Behav 98:207���209. https://doi.org/10.1016/j.yebeh.2019.06.033 [DOI: 10.1016/j.yebeh.2019.06.033]
  335. Tai LM, Weng JM, LaDu MJ, Brady ST (2020) Relevance of transgenic mouse models for Alzheimer���s disease. Prog Mol Biol Transl Sci 177:1���48. https://doi.org/10.1016/bs.pmbts.2020.07.007 [DOI: 10.1016/bs.pmbts.2020.07.007]
  336. Tamagno E, Guglielmotto M, Vasciaveo V, Tabaton M (2021) Oxidative stress and beta amyloid in Alzheimer���s disease. Which comes first: the chicken or the egg? Antioxidants 10:1479. https://doi.org/10.3390/antiox10091479 [DOI: 10.3390/antiox10091479]
  337. Tang C, Ma Y, Lei X et al (2023) Hypertension linked to Alzheimer���s disease via stroke: Mendelian randomization. Sci Rep 13:21606. https://doi.org/10.1038/s41598-023-49087-0 [DOI: 10.1038/s41598-023-49087-0]
  338. Tapia-Rojas C, Carvajal FJ, Mira RG et al (2018) Adolescent binge alcohol exposure affects the brain function through mitochondrial impairment. Mol Neurobiol 55:4473���4491. https://doi.org/10.1007/s12035-017-0613-4 [DOI: 10.1007/s12035-017-0613-4]
  339. Teunissen CE, Verberk IMW, Thijssen EH et al (2021) Blood-based biomarkers for Alzheimer���s disease: towards clinical implementation. Lancet Neurol 21:66���77. https://doi.org/10.1016/s1474-4422(21)00361-6 [DOI: 10.1016/s1474-4422(21)00361-6]
  340. Thanos PK, Wang G-J, Volkow ND (2008) Positron emission tomography as a tool for studying alcohol abuse. Alcohol Res Health 31:233���237 [>PMCID: ]
  341. The Alzheimer���s Association (2024) 2024 Alzheimer���s disease facts and figures. Alzheimers Dement 20(5):3708���3821. https://doi.org/10.1002/alz.13809 [DOI: 10.1002/alz.13809]
  342. Thijssen EH, Verberk IMW, Stoops E et al (2020) Amyloid, pTau, NfL, and GFAP as biomarkers for Alzheimer���s disease. Alzheimers Dement 16. https://doi.org/10.1002/alz.038179
  343. Thijssen EH, Joie RL, Strom A et al (2021) Plasma phosphorylated tau 217 and phosphorylated tau 181 as biomarkers in Alzheimer���s disease and frontotemporal lobar degeneration: a retrospective diagnostic performance study. Lancet Neurol 20:739���752. https://doi.org/10.1016/s1474-4422(21)00214-3 [DOI: 10.1016/s1474-4422(21)00214-3]
  344. Thomas AJ, Hamilton CA, Heslegrave A et al (2022) A longitudinal study of plasma pTau181 in mild cognitive impairment with Lewy bodies and Alzheimer���s disease. Mov Disord 37:1495���1504. https://doi.org/10.1002/mds.28994 [DOI: 10.1002/mds.28994]
  345. Thorlakur J, Hreinn S, Stacy S et al (2013) Variant of TREM2 associated with the risk of Alzheimer���s disease. N Engl J Med 368:107���116. https://doi.org/10.1056/nejmoa1211103 [DOI: 10.1056/nejmoa1211103]
  346. Tomasi DG, Wiers CE, Shokri-Kojori E et al (2019) Association between reduced brain glucose metabolism and cortical thickness in alcoholics: evidence of neurotoxicity. Int J Neuropsychopharmacol 22:548���559. https://doi.org/10.1093/ijnp/pyz036 [DOI: 10.1093/ijnp/pyz036]
  347. Topiwala A, Ebmeier KP, Maullin-Sapey T, Nichols TE (2022) Alcohol consumption and MRI markers of brain structure and function: Cohort study of 25,378 UK Biobank participants. NeuroImage: Clin 35:103066. https://doi.org/10.1016/j.nicl.2022.103066 [DOI: 10.1016/j.nicl.2022.103066]
  348. Tucker AE, Pauneto CDMA, Barnett AM, Coleman LG (2022) Chronic ethanol causes persistent increases in Alzheimer���s tau pathology in female 3xTg-AD mice: a potential role for lysosomal impairment. Front Behav Neurosci 16:886634. https://doi.org/10.3389/fnbeh.2022.886634 [DOI: 10.3389/fnbeh.2022.886634]
  349. Tyas SL (2001) Alcohol use and the risk of developing Alzheimer���s disease. Alcohol Res Health 25:299 [>PMCID: ]
  350. Tzartos JS, Boufidou F, Stergiou C et al (2022) Plasma P-Tau181 for the discrimination of Alzheimer���s disease from other primary dementing and/or movement disorders. Biomolecules 12:1099. https://doi.org/10.3390/biom12081099 [DOI: 10.3390/biom12081099]
  351. Valenzuela CF (1997) Alcohol and neurotransmitter interactions. Alcohol Health Res World 21:144���148 [>PMCID: ]
  352. Valenzuela CF, Harris RA (1997) Alcohol: neurobiology. In: Lowinson JH, Ruiz P, Millman RB, Langrod JG (eds) Substance abuse: A comprehensive textbook. Williams & Wilkins, Baltimore, pp 119���142
  353. Valenzuela CF, Jotty K (2015) Mini-review: effects of ethanol on gabaa receptor-mediated neurotransmission in the cerebellar cortex���recent advances. Cerebellum 14:438���446. https://doi.org/10.1007/s12311-014-0639-3 [DOI: 10.1007/s12311-014-0639-3]
  354. van der Flier WM, Scheltens P (2022) The ATN framework���moving preclinical Alzheimer disease to clinical relevance. JAMA Neurol 79:968���970. https://doi.org/10.1001/jamaneurol.2022.2967 [DOI: 10.1001/jamaneurol.2022.2967]
  355. van Groen T, Miettinen P, Kadish I (2003) The entorhinal cortex of the mouse: Organization of the projection to the hippocampal formation. Hippocampus 13:133���149. https://doi.org/10.1002/hipo.10037 [DOI: 10.1002/hipo.10037]
  356. Vermunt L, Sikkes SAM, van den Hout A et al (2019) Duration of preclinical, prodromal, and dementia stages of Alzheimer���s disease in relation to age, sex, and APOE genotype. Alzheimers Dement 15:888���898. https://doi.org/10.1016/j.jalz.2019.04.001 [DOI: 10.1016/j.jalz.2019.04.001]
  357. Verret L, Mann EO, Hang GB et al (2012) Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell 149:708���721. https://doi.org/10.1016/j.cell.2012.02.046 [DOI: 10.1016/j.cell.2012.02.046]
  358. Vetreno RP, Crews FT (2012) Adolescent binge drinking increases expression of the danger signal receptor agonist HMGB1 and Toll-like receptors in the adult prefrontal cortex. Neuroscience 226:475���488. https://doi.org/10.1016/j.neuroscience.2012.08.046 [DOI: 10.1016/j.neuroscience.2012.08.046]
  359. Vetreno RP, Broadwater M, Liu W et al (2014) Adolescent, but not adult, binge ethanol exposure leads to persistent global reductions of choline acetyltransferase expressing neurons in brain. PLoS One 9:e113421. https://doi.org/10.1371/journal.pone.0113421 [DOI: 10.1371/journal.pone.0113421]
  360. Vlad SC, Miller DR, Kowall NW, Felson DT (2008) Protective effects of NSAIDs on the development of Alzheimer disease. Neurology 70:1672���1677. https://doi.org/10.1212/01.wnl.0000311269.57716.63 [DOI: 10.1212/01.wnl.0000311269.57716.63]
  361. Vogels T, Leuzy A, Cicognola C et al (2019) Propagation of tau pathology: integrating insights from post mortem and in vivo studies. Biol Psychiatry. https://doi.org/10.1016/j.biopsych.2019.09.019
  362. Vogels T, Vargov�� G, Brezov��kov�� V et al (2020) Viral delivery of non-mutated human truncated tau to neurons recapitulates key features of human tauopathy in wild-type mice. J Alzheimers Dis 77:551���568. https://doi.org/10.3233/jad-200047 [DOI: 10.3233/jad-200047]
  363. Volkow ND, Wang G-J, Kojori ES et al (2015) Alcohol decreases baseline brain glucose metabolism more in heavy drinkers than controls but has no effect on stimulation-induced metabolic increases. J Neurosci 35:3248���3255. https://doi.org/10.1523/jneurosci.4877-14.2015 [DOI: 10.1523/jneurosci.4877-14.2015]
  364. Vossel KA, Beagle AJ, Rabinovici GD et al (2013) Seizures and epileptiform activity in the early stages of Alzheimer disease. JAMA Neurol 70:1158���1166. https://doi.org/10.1001/jamaneurol.2013.136 [DOI: 10.1001/jamaneurol.2013.136]
  365. Vossel KA, Ranasinghe KG, Beagle AJ et al (2016) Incidence and impact of subclinical epileptiform activity in Alzheimer���s disease. Ann Neurol 80:858���870. https://doi.org/10.1002/ana.24794 [DOI: 10.1002/ana.24794]
  366. Vossel KA, Tartaglia MC, Nygaard HB et al (2017) Epileptic activity in Alzheimer���s disease: causes and clinical relevance. Lancet Neurol 16:311���322. https://doi.org/10.1016/s1474-4422(17)30044-3 [DOI: 10.1016/s1474-4422(17)30044-3]
  367. Walsh DM, Selkoe DJ (2016) A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration. Nat Rev Neurosci 17:251���260. https://doi.org/10.1038/nrn.2016.13 [DOI: 10.1038/nrn.2016.13]
  368. Walter S, Letiembre M, Liu Y et al (2007) Role of the toll-like receptor 4 in neuroinflammation in Alzheimer���s disease. Cell Physiol Biochem 20:947���956. https://doi.org/10.1159/000110455 [DOI: 10.1159/000110455]
  369. Walter TJ, Vetreno RP, Crews FT (2017) Alcohol and stress activation of microglia and neurons: brain regional effects. Alcohol Clin Exp Res 41:2066���2081. https://doi.org/10.1111/acer.13511 [DOI: 10.1111/acer.13511]
  370. Walter KR, Ricketts DK, Presswood BH et al (2022) Prenatal alcohol exposure causes persistent microglial activation and age- and sex-specific effects on cognition and metabolic outcomes in an Alzheimer���s disease mouse model. Am J Drug Alcohol Abus 1���19. https://doi.org/10.1080/00952990.2022.2119571
  371. Wang Y, Mandelkow E (2016) Tau in physiology and pathology. Nat Rev Neurosci 17:22���35. https://doi.org/10.1038/nrn.2015.1 [DOI: 10.1038/nrn.2015.1]
  372. Wang J-Z, Xia Y-Y, Grundke-Iqbal I, Iqbal K (2013) Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration. J Alzheimers Dis 33:S123���S139. https://doi.org/10.3233/jad-2012-129031 [DOI: 10.3233/jad-2012-129031]
  373. Wang Y, Ulland TK, Ulrich JD et al (2016) TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. J Exp Med 213:667���675. https://doi.org/10.1084/jem.20151948 [DOI: 10.1084/jem.20151948]
  374. Wang Z-T, Li K-Y, Tan C-C et al (2021) Associations of alcohol consumption with cerebrospinal fluid biomarkers of Alzheimer���s disease pathology in cognitively intact older adults: the CABLE Study. J Alzheimers Dis 82:1045���1054. https://doi.org/10.3233/jad-210140 [DOI: 10.3233/jad-210140]
  375. Wegmann S, Bennett RE, Delorme L et al (2019) Experimental evidence for the age dependence of tau protein spread in the brain. Sci Adv 5:eaaw6404. https://doi.org/10.1126/sciadv.aaw6404 [DOI: 10.1126/sciadv.aaw6404]
  376. Wesseling H, Mair W, Kumar M et al (2020) Tau PTM profiles identify patient heterogeneity and stages of Alzheimer���s disease. Cell. https://doi.org/10.1016/j.cell.2020.10.029
  377. Weston LL, Jiang S, Chisholm D et al (2021) Interleukin-10 deficiency exacerbates inflammation-induced tau pathology. J Neuroinflammation 18:161. https://doi.org/10.1186/s12974-021-02211-1 [DOI: 10.1186/s12974-021-02211-1]
  378. Wieckowska-Gacek A, Mietelska-Porowska A, Wydrych M, Wojda U (2021) Western diet as a trigger of Alzheimer���s disease: From metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Res Rev 70:101397. https://doi.org/10.1016/j.arr.2021.101397 [DOI: 10.1016/j.arr.2021.101397]
  379. Wilcock DM, Lamb BT (2024) The importance of continuing development of novel animal models of Alzheimer���s disease and Alzheimer���s disease and related dementias. Alzheimers Dement 20(7):5078���5079. PMID: 38923143. PMCID: PMC11247659. https://doi.org/10.1002/alz.14105 . Epub 2024 Jun 26
  380. Wilson DF, Matschinsky FM (2020) Ethanol metabolism: The good, the bad, and the ugly. M��d Hypotheses 140:109638. https://doi.org/10.1016/j.mehy.2020.109638 [DOI: 10.1016/j.mehy.2020.109638]
  381. Wisch JK, Gordon BA, Barth��lemy NR et al (2024) Predicting continuous amyloid PET values with CSF tau phosphorylation occupancies. Alzheimers Dement. https://doi.org/10.1002/alz.14132
  382. Wolf SA, Boddeke HWGM, Kettenmann H (2016) Microglia in physiology and disease. Annu Rev Physiol 79:619���643. https://doi.org/10.1146/annurev-physiol-022516-034406 [DOI: 10.1146/annurev-physiol-022516-034406]
  383. Wolfe DM, Lee JH, Kumar A et al (2013) Autophagy failure in Alzheimer���s disease and the role of defective lysosomal acidification. Eur J Neurosci 37:1949���1961. https://doi.org/10.1111/ejn.12169 [DOI: 10.1111/ejn.12169]
  384. Wu JW, Hussaini SA, Bastille IM et al (2016) Neuronal activity enhances tau propagation and tau pathology in vivo. Nat Neurosci. https://doi.org/10.1038/nn.4328
  385. Xiang X, Wind K, Wiedemann T et al (2021) Microglial activation states drive glucose uptake and FDG-PET alterations in neurodegenerative diseases. Sci Transl Med 13:eabe5640. https://doi.org/10.1126/scitranslmed.abe5640 [DOI: 10.1126/scitranslmed.abe5640]
  386. Xu Y, Zhao M, Han Y, Zhang H (2020) GABAergic inhibitory interneuron deficits in Alzheimer���s disease: implications for treatment. Front Neurosci 14:660. https://doi.org/10.3389/fnins.2020.00660 [DOI: 10.3389/fnins.2020.00660]
  387. Yamada K, Holth JK, Liao F et al (2014) Neuronal activity regulates extracellular tau in vivo. J Exp Med 211:387���393. https://doi.org/10.1084/jem.20131685 [DOI: 10.1084/jem.20131685]
  388. Yan R, Wang W, Yang W et al (2024) Mitochondria-related candidate genes and diagnostic model to predict late-onset Alzheimer���s disease and mild cognitive impairment. J Alzheimers Dis 99:S299���S315. https://doi.org/10.3233/jad-230314 [DOI: 10.3233/jad-230314]
  389. Yang J-Y, Xue X, Tian H et al (2014) Role of microglia in ethanol-induced neurodegenerative disease: Pathological and behavioral dysfunction at different developmental stages. Pharmacol Ther 144:321���337. https://doi.org/10.1016/j.mcn.2019.103409 [DOI: 10.1016/j.mcn.2019.103409]
  390. Yang T, Li S, Xu H et al (2017) Large soluble oligomers of amyloid beta-protein from Alzheimer brain are far less neuroactive than the smaller oligomers to which they dissociate. J Neurosci 37:152���163. https://doi.org/10.1523/jneurosci.1698-16.2016 [DOI: 10.1523/jneurosci.1698-16.2016]
  391. Yeh W-C, Hsu C-Y, Li K-Y et al (2022) Association between subclinical epileptiform discharge and the severity of cognitive decline in Alzheimer���s disease: a longitudinal cohort study. J Alzheimers Dis 90:305���312. https://doi.org/10.3233/jad-220567 [DOI: 10.3233/jad-220567]
  392. Young ML, Franklin JL (2019) The mitochondria-targeted antioxidant MitoQ inhibits memory loss, neuropathology, and extends lifespan in aged 3xTg-AD mice. Mol Cell Neurosci 101:103409. https://doi.org/10.1016/j.pharmthera.2014.07.002 [DOI: 10.1016/j.pharmthera.2014.07.002]
  393. Yu Y, Run X, Liang Z et al (2009) Developmental regulation of tau phosphorylation, tau kinases, and tau phosphatases. J Neurochem 108:1480���1494. https://doi.org/10.1111/j.1471-4159.2009.05882.x [DOI: 10.1111/j.1471-4159.2009.05882.x]
  394. Yu JT, Xu W, Tan CC et al (2020) Evidence-based prevention of Alzheimer���s disease: systematic review and meta-analysis of 243 observational prospective studies and 153 randomised controlled trials. J Neurol Neurosurg Psychiatry 91:1201���1209. https://doi.org/10.1136/jnnp-2019-321913 [DOI: 10.1136/jnnp-2019-321913]
  395. Zandi PP, Anthony JC, Hayden KM et al (2002) Reduced incidence of AD with NSAID but not H2 receptor antagonists: the Cache County Study. Neurology 59:880���886. https://doi.org/10.1212/wnl.59.6.880 [DOI: 10.1212/wnl.59.6.880]
  396. Zhang L, Gai Y, Liu Y et al (2024) Tau induces inflammasome activation and microgliosis through acetylating NLRP3. Clin Transl Med 14:e1623. https://doi.org/10.1002/ctm2.1623 [DOI: 10.1002/ctm2.1623]
  397. Zhao S, Widman L, Hagstr��m H, Shang Y (2024) Disentangling the contributions of alcohol use disorder and alcohol-related liver disease towards dementia: A population-based cohort study. Addiction 119:706���716. https://doi.org/10.1111/add.16395 [DOI: 10.1111/add.16395]
  398. Zheng L, Roberg K, Jerhammar F et al (2006) Oxidative stress induces intralysosomal accumulation of alzheimer amyloid ��-protein in cultured neuroblastoma cells. Ann N Y Acad Sci 1067:248���251. https://doi.org/10.1196/annals.1354.032 [DOI: 10.1196/annals.1354.032]
  399. Zimatkin SM, Deitrich RA (1997) Ethanol metabolism in the brain. Addict Biol 2:387���400. https://doi.org/10.1080/13556219772444 [DOI: 10.1080/13556219772444]

MeSH Term

Alzheimer Disease
Humans
Risk Factors
Animals
Alcohol Drinking
Alcoholism
Oxidative Stress
Brain

Word Cloud

Created with Highcharts 10.0.0alcoholuseADAlzheimer'sdiseaseAlcoholmechanismsreviewratesstressrecentlyemergedmodifiableriskfactorHoweverneurobiologicalinteractspathogenesisremainpoorlyunderstoodchapterepidemiologicalpreclinicalsupportinteractionhypothesizeincreasesrateaccumulationspecificAD-relevantpathologiesprodromalphaseexacerbatesdementiaonsetprogressionfindconsumptionincreasingadolescencemiddleageagingpopulationstandemalsorisepotentiallyresultincreasedthroughoutlifespanbiologicalprocessescommondisordermeansuncoverpotentialinteractincludeoxidativeneuroimmunefunctionmetabolismpathogenictauopathydevelopmentspreadneuronalexcitatory/inhibitorybalanceEIBFinallyprovideforward-thinkingsuggestionsbelievefieldconsiderparticularinclusionassessmentslongitudinalstudiespreclinical studiesalcohol'simpactsusingbetteranimalmodelslate-onsetLOADExcessiveUseRiskFactorDisease:EpidemiologicalPreclinicalEvidenceAlzheimer���sDementiaEthanolExcitationInhibitionMetabolismNeuroimmuneOxidative

Similar Articles

Cited By