Advances in Regenerative Medicine, Cell Therapy, and 3D Bioprinting for Glaucoma and Retinal Diseases.

Kevin Y Wu, Rahma M Osman, Obinna Esomchukwu, Michael Marchand, Bich H Nguyen, Simon D Tran
Author Information
  1. Kevin Y Wu: Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC, Canada. yang.wu@usherbrooke.ca.
  2. Rahma M Osman: Department of Medicine, School of Medicine, Queen's University, Kingston, ON, Canada.
  3. Obinna Esomchukwu: Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
  4. Michael Marchand: Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC, Canada.
  5. Bich H Nguyen: CHU Sainte Justine Hospital, Montreal, QC, Canada.
  6. Simon D Tran: Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada.

Abstract

Regenerative medicine, cell therapy, and 3D bioprinting represent promising advancements in addressing retinal and glaucomatous diseases. These conditions, including diabetic retinopathy (DR), age-related macular degeneration (AMD), inherited retinal degenerations (IRDs), and glaucomatous optic neuropathy, have complex pathophysiologies that involve neurodegeneration, oxidative stress, and vascular dysfunction. Despite significant progress in conventional therapies, including anti-VEGF injections, laser photocoagulation, and intraocular pressure (IOP)-lowering interventions, these approaches remain limited in reversing disease progression and restoring lost visual function.This chapter explores the potential of emerging regenerative therapies to fill these critical gaps. For retinal diseases, cell replacement strategies using human embryonic stem cells (hESCs), induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs) have demonstrated encouraging outcomes in clinical trials, though challenges in delivery and long-term integration persist. Similarly, neuroprotective strategies and the use of retinal progenitor cells hold promise for preserving and restoring vision in degenerative retinal conditions. Advances in 3D bioprinting and retinal organoids further augment these efforts, offering innovative tools for disease modeling and therapy development.In glaucoma, regenerative approaches targeting trabecular meshwork (TM) dysfunction and retinal ganglion cell (RGC) loss are gaining traction. Stem cell-based therapies have shown potential in restoring TM functionality and providing neuroprotection, while innovative delivery systems and bioengineered platforms aim to enhance therapeutic efficacy and safety.This chapter provides an overview of the evolving landscape of regenerative therapies for retinal and glaucomatous diseases, highlighting current advancements, ongoing challenges, and future directions in the field. These approaches, while still emerging, hold the potential to transform the management of these complex ocular diseases.

Keywords

References

  1. 3D vascularized eye tissue models age-related macular degeneration (2023) Nature Methods 20(1):46���47. https://doi.org/10.1038/s41592-022-01702-0
  2. Abu-Hassan DW, Li X, Ryan EI, Acott TS, Kelley MJ (2015) Induced pluripotent stem cells restore function in a human cell loss model of open-angle glaucoma. Stem Cells 33(3):751���761. https://doi.org/10.1002/stem.1885 [DOI: 10.1002/stem.1885]
  3. Alvarado JA, Yeh R-F, Franse-Carman L, Marcellino G, Brownstein MJ (2005) Interactions between endothelia of the trabecular meshwork and of Schlemm���s canal: a new insight into the regulation of aqueous outflow in the eye. Trans Am Ophthalmol Soc 103:148���163
  4. American Diabetes Association Professional Practice Committee (2023) 12. Retinopathy, neuropathy, and foot care: standards of care in diabetes���2024. Diabetes Care 47(Supplement_1):S231���S243. https://doi.org/10.2337/dc24-S012 [DOI: 10.2337/dc24-S012]
  5. Anderson DR, Normal Tension Glaucoma Study (2003) Collaborative normal tension glaucoma study. Curr Opin Ophthalmol 14(2):86���90. https://doi.org/10.1097/00055735-200304000-00006 [DOI: 10.1097/00055735-200304000-00006]
  6. Andresen HM, Regueira HT, Leighton F (2006) [Oxidative stress in critically ill patients]. Revista Medica De Chile 134(5):649���656. https://doi.org/10.4067/s0034-98872006000500015
  7. Antonetti DA, Silva PS, Stitt AW (2021) Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nat Rev Endocrinol 17(4):195���206. https://doi.org/10.1038/s41574-020-00451-4 [DOI: 10.1038/s41574-020-00451-4]
  8. Ben-Yosef T (2022) Inherited retinal diseases. Int J Mol Sci 23(21):13467. https://doi.org/10.3390/ijms232113467 [DOI: 10.3390/ijms232113467]
  9. Birch DG, Bennett LD, Duncan JL, Weleber RG, Pennesi ME (2016) Long-term follow-up of patients with retinitis pigmentosa receiving intraocular ciliary neurotrophic factor implants. Am J Ophthalmol 170:10���14. https://doi.org/10.1016/j.ajo.2016.07.013 [DOI: 10.1016/j.ajo.2016.07.013]
  10. Bull ND, Irvine K-A, Franklin RJM, Martin KR (2009) Transplanted oligodendrocyte precursor cells reduce neurodegeneration in a model of glaucoma. Invest Ophthalmol Vis Sci 50(9):4244���4253. https://doi.org/10.1167/iovs.08-3239 [DOI: 10.1167/iovs.08-3239]
  11. Burgoyne CF, Downs JC, Bellezza AJ, Suh J-KF, Hart RT (2005) The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res 24(1):39���73. https://doi.org/10.1016/j.preteyeres.2004.06.001 [DOI: 10.1016/j.preteyeres.2004.06.001]
  12. Calkins DJ, Pekny M, Cooper ML, Benowitz L, Calkins D, Benowitz L, Cooper M, Crowston J, Huberman A, Johnson E, Lu R, Pekny M, Sappington R, Zack D (2017) The challenge of regenerative therapies for the optic nerve in glaucoma. Exp Eye Res 157:28���33. https://doi.org/10.1016/j.exer.2017.01.007 [DOI: 10.1016/j.exer.2017.01.007]
  13. Cao W, Tombran-Tink J, Chen W, Mrazek D, Elias R, McGinnis JF (1999) Pigment epithelium-derived factor protects cultured retinal neurons against hydrogen peroxide-induced cell death. J Neurosci Res 57(6):789���800
  14. Cayouette M, Smith SB, Becerra SP, Gravel C (1999) Pigment epithelium-derived factor delays the death of photoreceptors in mouse models of inherited retinal degenerations. Neurobiol Dis 6(6):523���532. https://doi.org/10.1006/nbdi.1999.0263 [DOI: 10.1006/nbdi.1999.0263]
  15. Chaudhry GR, Fecek C, Lai MM, Wu W-C, Chang M, Vasquez A, Pasierb M, Trese MT (2009) Fate of embryonic stem cell derivatives implanted into the vitreous of a slow retinal degenerative mouse model. Stem Cells Dev 18(2):247���258. https://doi.org/10.1089/scd.2008.0057 [DOI: 10.1089/scd.2008.0057]
  16. Choi YJ, Oh IK, Oh JR, Huh K (2006) Intravitreal versus posterior subtenon injection of triamcinolone acetonide for diabetic macular edema. Korean J Ophthalmol KJO 20(4):205���209. https://doi.org/10.3341/kjo.2006.20.4.205 [DOI: 10.3341/kjo.2006.20.4.205]
  17. Coney JM (2019) Addressing unmet needs in diabetic retinopathy, p 25. https://www.ajmc.com/view/addressing-unmet-needs-in-diabetic-retinopathy
  18. Cross N, van Steen C, Zegaoui Y, Satherley A, Angelillo L (2022) Retinitis pigmentosa: burden of disease and current unmet needs. Clin Ophthalmol (Auckland, NZ) 16:1993���2010. https://doi.org/10.2147/OPTH.S365486 [DOI: 10.2147/OPTH.S365486]
  19. da Cruz L, Fynes K, Georgiadis O, Kerby J, Luo YH, Ahmado A, Vernon A, Daniels JT, Nommiste B, Hasan SM, Gooljar SB, Carr A-JF, Vugler A, Ramsden CM, Bictash M, Fenster M, Steer J, Harbinson T, Wilbrey A et al (2018) Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol 36(4):328���337. https://doi.org/10.1038/nbt.4114 [DOI: 10.1038/nbt.4114]
  20. Dahlmann-Noor A, Vijay S, Jayaram H, Limb A, Khaw PT (2010) Current approaches and future prospects for stem cell rescue and regeneration of the retina and optic nerve. Can J Ophthalmol J Can D���ophtalmologie 45(4):333���341. https://doi.org/10.3129/i10-077 [DOI: 10.3129/i10-077]
  21. Dell AC, Wagner G, Own J, Geibel JP (2022) 3D bioprinting using hydrogels: cell inks and tissue engineering applications. Pharmaceutics 14(12):2596. https://doi.org/10.3390/pharmaceutics14122596 [DOI: 10.3390/pharmaceutics14122596]
  22. Do Rhee K, Wang Y, ten Hoeve J, Stiles L, Nguyen TTT, Zhang X, Vergnes L, Reue K, Shirihai O, Bok D, Yang X-J (2022) Ciliary neurotrophic factor-mediated neuroprotection involves enhanced glycolysis and anabolism in degenerating mouse retinas. Nat Commun 13(1):7037. https://doi.org/10.1038/s41467-022-34443-x [DOI: 10.1038/s41467-022-34443-x]
  23. Drack AV, Dumitrescu AV, Bhattarai S, Gratie D, Stone EM, Mullins R, Sheffield VC (2012) TUDCA slows retinal degeneration in two different mouse models of retinitis pigmentosa and prevents obesity in Bardet-Biedl syndrome type 1 mice. Invest Ophthalmol Vis Sci 53(1):100���106. https://doi.org/10.1167/iovs.11-8544 [DOI: 10.1167/iovs.11-8544]
  24. Drag S, Dotiwala F, Upadhyay AK (2023) Gene therapy for retinal degenerative diseases: progress, challenges, and future directions. Invest Ophthalmol Vis Sci 64(7):39. https://doi.org/10.1167/iovs.64.7.39 [DOI: 10.1167/iovs.64.7.39]
  25. Dreyer EB (1998) A proposed role for excitotoxicity in glaucoma. J Glaucoma 7(1):62���67
  26. Duncan JL, Bowman A, Laster A, Gelfman C, Birch DG, Boye SE, Daiger SP, del Priore L, Zack DJ, Handa JT (2024) Inherited retinal degenerations and non-neovascular age-related macular degeneration: progress and unmet needs. Transl Vision Sci Technol 13(12):28. https://doi.org/10.1167/tvst.13.12.28 [DOI: 10.1167/tvst.13.12.28]
  27. Eiraku M, Sasai Y (2011) Mouse embryonic stem cell culture for generation of three-dimensional retinal and cortical tissues. Nat Protoc 7(1):69���79. https://doi.org/10.1038/nprot.2011.429 [DOI: 10.1038/nprot.2011.429]
  28. Fernandes AR, Zieli��ska A, Sanchez-Lopez E, Dos Santos T, Garcia ML, Silva AM, Karczewski J, Souto EB (2022) Exudative versus nonexudative age-related macular degeneration: physiopathology and treatment options. Int J Mol Sci 23(5):2592. https://doi.org/10.3390/ijms23052592 [DOI: 10.3390/ijms23052592]
  29. Fitch MT, Silver J (2008) CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp Neurol 209(2):294���301. https://doi.org/10.1016/j.expneurol.2007.05.014 [DOI: 10.1016/j.expneurol.2007.05.014]
  30. Flammer J, Mozaffarieh M (2008) Autoregulation, a balancing act between supply and demand. Can J Ophthalmol J Can D���ophtalmologie 43(3):317���321. https://doi.org/10.3129/i08-056 [DOI: 10.3129/i08-056]
  31. Flores R, Carneiro ��, Vieira M, Tenreiro S, Seabra MC (2021) Age-related macular degeneration: pathophysiology, management, and future perspectives. Ophthalmologica J Int D���ophtalmologie Int J Ophthalmol Zeitschrift Fur Augenheilkunde 244(6):495���511. https://doi.org/10.1159/000517520 [DOI: 10.1159/000517520]
  32. Fu Y, Yau K-W (2007) Phototransduction in mouse rods and cones. Pflugers Arch���Eur J Physiol 454(5):805���819. https://doi.org/10.1007/s00424-006-0194-y [DOI: 10.1007/s00424-006-0194-y]
  33. Fuchshofer R, Tamm ER (2012) The role of TGF-�� in the pathogenesis of primary open-angle glaucoma. Cell Tissue Res 347(1):279���290. https://doi.org/10.1007/s00441-011-1274-7 [DOI: 10.1007/s00441-011-1274-7]
  34. Gaspar JM, Martins A, Cruz R, Rodrigues CMP, Ambr��sio AF, Santiago AR (2013) Tauroursodeoxycholic acid protects retinal neural cells from cell death induced by prolonged exposure to elevated glucose. Neuroscience 253:380���388. https://doi.org/10.1016/j.neuroscience.2013.08.053 [DOI: 10.1016/j.neuroscience.2013.08.053]
  35. Girmens J-F, Sahel J-A, Marazova K (2012) Dry age-related macular degeneration: a currently unmet clinical need. Intractable Rare Dis Res 1(3):103���114. https://doi.org/10.5582/irdr.2012.v1.3.103 [DOI: 10.5582/irdr.2012.v1.3.103]
  36. Glazer LC, Dryja TP (2002) Understanding the etiology of Stargardt���s disease. Ophthalmol Clin 15(1):93���100. https://doi.org/10.1016/S0896-1549(01)00011-6 [DOI: 10.1016/S0896-1549(01)00011-6]
  37. Grading diabetic retinopathy from stereoscopic color fundus photographs���An extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group (1991) Ophthalmology 98(5 Suppl):786���806
  38. Gu BK, Choi DJ, Park SJ, Kim Y-J, Kim C-H (2018) 3D bioprinting technologies for tissue engineering applications. Adv Exp Med Biol 1078:15���28. https://doi.org/10.1007/978-981-13-0950-2_2 [DOI: 10.1007/978-981-13-0950-2_2]
  39. Harper MM, Grozdanic SD, Blits B, Kuehn MH, Zamzow D, Buss JE, Kardon RH, Sakaguchi DS (2011) Transplantation of BDNF-secreting mesenchymal stem cells provides neuroprotection in chronically hypertensive rat eyes. Invest Ophthalmol Vis Sci 52(7):4506���4515. https://doi.org/10.1167/iovs.11-7346 [DOI: 10.1167/iovs.11-7346]
  40. Harrell CR, Fellabaum C, Arsenijevic A, Markovic BS, Djonov V, Volarevic V (2019) Therapeutic potential of mesenchymal stem cells and their secretome in the treatment of glaucoma. Stem Cells Int 2019:1���11. https://doi.org/10.1155/2019/7869130 [DOI: 10.1155/2019/7869130]
  41. Ho AC, Chang TS, Samuel M, Williamson P, Willenbucher RF, Malone T (2017) Experience with a subretinal cell-based therapy in patients with geographic atrophy secondary to age-related macular degeneration. Am J Ophthalmol 179:67���80. https://doi.org/10.1016/j.ajo.2017.04.006 [DOI: 10.1016/j.ajo.2017.04.006]
  42. Howell GR, Macalinao DG, Sousa GL, Walden M, Soto I, Kneeland SC, Barbay JM, King BL, Marchant JK, Hibbs M, Stevens B, Barres BA, Clark AF, Libby RT, John SWM (2011) Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J Clin Invest 121(4):1429���1444. https://doi.org/10.1172/JCI44646 [DOI: 10.1172/JCI44646]
  43. Irigoyen C, Amenabar Alonso A, Sanchez-Molina J, Rodr��guez-Hidalgo M, Lara-L��pez A, Ruiz-Ederra J (2022) Subretinal injection techniques for retinal disease: a review. J Clin Med 11(16):4717. https://doi.org/10.3390/jcm11164717 [DOI: 10.3390/jcm11164717]
  44. Jalving M, Schepers H (2009) Induced pluripotent stem cells: will they be safe? Curr Opin Mol Ther 11(4):383���393
  45. Johnson TV, Bull ND, Hunt DP, Marina N, Tomarev SI, Martin KR (2010) Neuroprotective effects of intravitreal mesenchymal stem cell transplantation in experimental glaucoma. Invest Ophthalmol Vis Sci 51(4):2051���2059. https://doi.org/10.1167/iovs.09-4509 [DOI: 10.1167/iovs.09-4509]
  46. Ju W-K, Kim K-Y, Lindsey JD, Angert M, Duong-Polk KX, Scott RT, Kim JJ, Kukhmazov I, Ellisman MH, Perkins GA, Weinreb RN (2008) Intraocular pressure elevation induces mitochondrial fission and triggers OPA1 release in glaucomatous optic nerve. Invest Ophthalmol Vis Sci 49(11):4903���4911. https://doi.org/10.1167/iovs.07-1661 [DOI: 10.1167/iovs.07-1661]
  47. Kashani AH, Lebkowski JS, Rahhal FM, Avery RL, Salehi-Had H, Chen S, Chan C, Palejwala N, Ingram A, Dang W, Lin C-M, Mitra D, Pennington BO, Hinman C, Faynus MA, Bailey JK, Mohan S, Rao N, Johnson LV et al (2021) One-year follow-up in a phase 1/2a clinical trial of an allogeneic RPE cell bioengineered implant for advanced dry age-related macular degeneration. Transl Vision Sci Technol 10(10):13. https://doi.org/10.1167/tvst.10.10.13 [DOI: 10.1167/tvst.10.10.13]
  48. Kelley MJ, Rose AY, Keller KE, Hessle H, Samples JR, Acott TS (2009) Stem cells in the trabecular meshwork: present and future promises. Exp Eye Res 88(4):747���751. https://doi.org/10.1016/j.exer.2008.10.024 [DOI: 10.1016/j.exer.2008.10.024]
  49. Khachigian LM (2020) Pharmaceutical patents: reconciling the human right to health with the incentive to invent. Drug Discov Today 25(7):1135���1141. https://doi.org/10.1016/j.drudis.2020.04.009 [DOI: 10.1016/j.drudis.2020.04.009]
  50. Khachigian LM, Liew G, Teo KYC, Wong TY, Mitchell P (2023) Emerging therapeutic strategies for unmet need in neovascular age-related macular degeneration. J Transl Med 21:133. https://doi.org/10.1186/s12967-023-03937-7 [DOI: 10.1186/s12967-023-03937-7]
  51. Khanani AM, Patel SS, Staurenghi G, Tadayoni R, Danzig CJ, Eichenbaum DA, Hsu J, Wykoff CC, Heier JS, Lally DR, Mon��s J, Nielsen JS, Sheth VS, Kaiser PK, Clark J, Zhu L, Patel H, Tang J, Desai D et al (2023) Efficacy and safety of avacincaptad pegol in patients with geographic atrophy (GATHER2): 12-month results from a randomised, double-masked, phase 3 trial. Lancet (London, England) 402(10411):1449���1458. https://doi.org/10.1016/S0140-6736(23)01583-0 [DOI: 10.1016/S0140-6736(23)01583-0]
  52. Kim J, Kong JS, Kim H, Jo Y, Cho D-W, Jang J (2022) A bioprinted bruch���s membrane for modeling smoke-induced retinal pigment epithelium degeneration via hybrid membrane printing technology. Adv Healthc Mater 11(24):2200728. https://doi.org/10.1002/adhm.202200728 [DOI: 10.1002/adhm.202200728]
  53. Kumar A, Siqi X, Zhou M, Chen W, Yang E, Price A, Le L, Zhang Y, Florens L, Washburn M, Kumar A, Li Y, Xu Y, Lathrop K, Davoli K, Chen Y, Schuman JS, Xie T, Du Y (2021) Stem cell-free therapy for glaucoma to preserve vision. bioRxiv:2021.06.18.449038. https://doi.org/10.1101/2021.06.18.449038
  54. Kuppermann BD, Boyer DS, Mills B, Yang J, Klassen HJ (2018) Safety and activity of a single, intravitreal injection of human retinal progenitor cells (jCell) for treatment of retinitis pigmentosa (RP). Invest Ophthalmol Vis Sci 59(9):2987
  55. Lan X, Jiang H, Wang Q, Shiqi Q, Xiong Y (2024) The application of retinal organoids in ophthalmic regenerative medicine: a mini-review. Regener Therapy 26:382���386. https://doi.org/10.1016/j.reth.2024.06.013 [DOI: 10.1016/j.reth.2024.06.013]
  56. Lassoued A, Zhang F, Kurokawa K, Liu Y, Bernucci MT, Crowell JA, Miller DT (2021) Cone photoreceptor dysfunction in retinitis pigmentosa revealed by optoretinography. Proc Natl Acad Sci 118(47):e2107444118. https://doi.org/10.1073/pnas.2107444118 [DOI: 10.1073/pnas.2107444118]
  57. Lawson EC, Bhatia SK, Han MK, Aung MH, Ciavatta V, Boatright JH, Pardue MT (2016) Tauroursodeoxycholic acid protects retinal function and structure in rd1 mice. In: Bowes Rickman C, LaVail MM, Anderson RE, Grimm C, Hollyfield J, Ash J (eds) Retinal degenerative diseases. Springer, pp 431���436. https://doi.org/10.1007/978-3-319-17121-0_57 [DOI: 10.1007/978-3-319-17121-0_57]
  58. Lei Q, Zhang R, Yuan F, Xiang M (2024) Integration and differentiation of transplanted human iPSC-derived retinal ganglion cell precursors in murine retinas. Int J Mol Sci 25(23):Article 23. https://doi.org/10.3390/ijms252312947 [DOI: 10.3390/ijms252312947]
  59. Liao DS, Grossi FV, El Mehdi D, Gerber MR, Brown DM, Heier JS, Wykoff CC, Singerman LJ, Abraham P, Grassmann F, Nuernberg P, Weber BHF, Deschatelets P, Kim RY, Chung CY, Ribeiro RM, Hamdani M, Rosenfeld PJ, Boyer DS et al (2020) Complement C3 inhibitor pegcetacoplan for geographic atrophy secondary to age-related macular degeneration: a randomized phase 2 trial. Ophthalmology 127(2):186���195. https://doi.org/10.1016/j.ophtha.2019.07.011 [DOI: 10.1016/j.ophtha.2019.07.011]
  60. Liao D, Boyer DS, Kaiser P, Kuppermann BD, Heier J, Mehta M, Joseph A, Kammer R, Mills B, Yang J, Klassen H (2021) Intravitreal injection of allogeneic human retinal progenitor cells (hRPC) for treatment of retinitis pigmentosa: a prospective randomized controlled phase 2b trial. Invest Ophthalmol Vis Sci 62(8):3240
  61. Lin B, McLelland BT, Aramant RB, Thomas BB, Nistor G, Keirstead HS, Seiler MJ (2020) Retina organoid transplants develop photoreceptors and improve visual function in RCS rats with RPE dysfunction. Invest Ophthalmol Vis Sci 61(11):34. https://doi.org/10.1167/iovs.61.11.34 [DOI: 10.1167/iovs.61.11.34]
  62. Liton PB, Challa P, Stinnett S, Luna C, Epstein DL, Gonzalez P (2005) Cellular senescence in the glaucomatous outflow pathway. Exp Gerontol 40(8���9):745���748. https://doi.org/10.1016/j.exger.2005.06.005 [DOI: 10.1016/j.exger.2005.06.005]
  63. Liu Y, Xu HW, Wang L, Li SY, Zhao CJ, Hao J, Li QY, Zhao TT, Wu W, Wang Y, Zhou Q, Qian C, Wang L, Yin ZQ (2018) Human embryonic stem cell-derived retinal pigment epithelium transplants as a potential treatment for wet age-related macular degeneration. Cell Discov 4(1):1���10. https://doi.org/10.1038/s41421-018-0053-y [DOI: 10.1038/s41421-018-0053-y]
  64. Liu H, Wu C, Hu S, Leng B, Lou X, Liu Z, Su X, Huang D (2024) Lutein modulates cellular functionalities and regulates NLRP3 inflammasome in a HO-challenged three-dimensional retinal pigment epithelium model. J Agric Food Chem 72(26):14701���14712. https://doi.org/10.1021/acs.jafc.4c01537 [DOI: 10.1021/acs.jafc.4c01537]
  65. Maekawa Y, Onishi A, Matsushita K, Koide N, Mandai M, Suzuma K, Kitaoka T, Kuwahara A, Ozone C, Nakano T, Eiraku M, Takahashi M (2016) Optimized culture system to induce neurite outgrowth from retinal ganglion cells in three-dimensional retinal aggregates differentiated from mouse and human embryonic stem cells. Curr Eye Res 41(4):558���568. https://doi.org/10.3109/02713683.2015.1038359 [DOI: 10.3109/02713683.2015.1038359]
  66. Mandai M, Fujii M, Hashiguchi T, Sunagawa GA, Ito S, Sun J, Kaneko J, Sho J, Yamada C, Takahashi M (2017a) iPSC-derived retina transplants improve vision in rd1 end-stage retinal-degeneration mice. Stem Cell Rep 8(1):69���83. https://doi.org/10.1016/j.stemcr.2016.12.008 [DOI: 10.1016/j.stemcr.2016.12.008]
  67. Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, Fujihara M, Akimaru H, Sakai N, Shibata Y, Terada M, Nomiya Y, Tanishima S, Nakamura M, Kamao H, Sugita S, Onishi A, Ito T, Fujita K et al (2017b) Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med 376(11):1038���1046. https://doi.org/10.1056/NEJMoa1608368 [DOI: 10.1056/NEJMoa1608368]
  68. Manuguerra-Gagn�� R, Boulos PR, Ammar A, Leblond FA, Krosl G, Pichette V, Lesk MR, Roy D-C (2013) Transplantation of mesenchymal stem cells promotes tissue regeneration in a glaucoma model through laser-induced paracrine factor secretion and progenitor cell recruitment. Stem Cells (Dayton, Ohio) 31(6):1136���1148. https://doi.org/10.1002/stem.1364 [DOI: 10.1002/stem.1364]
  69. Martin KRG, Quigley HA, Zack DJ, Levkovitch-Verbin H, Kielczewski J, Valenta D, Baumrind L, Pease ME, Klein RL, Hauswirth WW (2003) Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model. Invest Ophthalmol Vis Sci 44(10):4357���4365. https://doi.org/10.1167/iovs.02-1332 [DOI: 10.1167/iovs.02-1332]
  70. Mead B, Logan A, Berry M, Leadbeater W, Scheven BA (2013) Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury. Invest Ophthalmol Vis Sci 54(12):7544���7556. https://doi.org/10.1167/iovs.13-13045 [DOI: 10.1167/iovs.13-13045]
  71. Mead B, Ahmed Z, Tomarev S (2018) Mesenchymal stem cell-derived small extracellular vesicles promote neuroprotection in a genetic DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci 59(13):5473���5480. https://doi.org/10.1167/iovs.18-25310 [DOI: 10.1167/iovs.18-25310]
  72. Mehat MS, Sundaram V, Ripamonti C, Robson AG, Smith AJ, Borooah S, Robinson M, Rosenthal AN, Innes W, Weleber RG, Lee RWJ, Crossland M, Rubin GS, Dhillon B, Steel DHW, Anglade E, Lanza RP, Ali RR, Michaelides M, Bainbridge JWB (2018) Transplantation of human embryonic stem cell-derived retinal pigment epithelial cells in macular degeneration. Ophthalmology 125(11):1765���1775. https://doi.org/10.1016/j.ophtha.2018.04.037 [DOI: 10.1016/j.ophtha.2018.04.037]
  73. Meyer-Franke A, Kaplan MR, Pfrieger FW, Barres BA (1995) Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 15(4):805���819. https://doi.org/10.1016/0896-6273(95)90172-8 [DOI: 10.1016/0896-6273(95)90172-8]
  74. Newton F, Megaw R (2020) Mechanisms of photoreceptor death in retinitis pigmentosa. Gene 11(10):1120. https://doi.org/10.3390/genes11101120 [DOI: 10.3390/genes11101120]
  75. Nguyen CL, Gillies MC, Nguyen V, Daien V, Cohn A, Banerjee G, Arnold J (2019) Characterization of poor visual outcomes of neovascular age-related macular degeneration treated with anti���vascular endothelial growth factor agents. Ophthalmology 126(5):735���742. https://doi.org/10.1016/j.ophtha.2018.11.036 [DOI: 10.1016/j.ophtha.2018.11.036]
  76. Nickells RW (2007) From ocular hypertension to ganglion cell death: a theoretical sequence of events leading to glaucoma. Can J Ophthalmol J Can D���ophtalmologie 42(2):278���287
  77. O���Neal TB, Tripathy K, Luther EE (2024) Retinitis pigmentosa. In: StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK519518/
  78. Omura T, Asari M, Yamamoto J, Oka K, Hoshina C, Maseda C, Awaya T, Tasaki Y, Shiono H, Yonezawa A, Masuda S, Matsubara K, Shimizu K (2013) Sodium tauroursodeoxycholate prevents paraquat-induced cell death by suppressing endoplasmic reticulum stress responses in human lung epithelial A549 cells. Biochem Biophys Res Commun 432(4):689���694. https://doi.org/10.1016/j.bbrc.2013.01.131 [DOI: 10.1016/j.bbrc.2013.01.131]
  79. Oveson BC, Iwase T, Hackett SF, Lee SY, Usui S, Sedlak TW, Snyder SH, Campochiaro PA, Sung JU (2011) Constituents of bile, bilirubin and TUDCA, protect against oxidative stress-induced retinal degeneration. J Neurochem 116(1):144���153. https://doi.org/10.1111/j.1471-4159.2010.07092.x [DOI: 10.1111/j.1471-4159.2010.07092.x]
  80. Ozbolat IT (2015) Scaffold-based or scaffold-free bioprinting: competing or complementing approaches? J Nanotechnol Eng Med 6(024701). https://doi.org/10.1115/1.4030414
  81. ��zmert E, Arslan U (2020) Management of retinitis pigmentosa by Wharton���s jelly derived mesenchymal stem cells: preliminary clinical results. Stem Cell Res Ther 11(1):25. https://doi.org/10.1186/s13287-020-1549-6 [DOI: 10.1186/s13287-020-1549-6]
  82. Park IH, Kim MK, Kim SU (2008) Ursodeoxycholic acid prevents apoptosis of mouse sensory neurons induced by cisplatin by reducing P53 accumulation. Biochem Biophys Res Commun 377(4):1025���1030. https://doi.org/10.1016/j.bbrc.2008.06.014 [DOI: 10.1016/j.bbrc.2008.06.014]
  83. Park M, Shin HA, Duong V-A, Lee H, Lew H (2022) The role of extracellular vesicles in optic nerve injury: neuroprotection and mitochondrial homeostasis. Cells 11(23):3720. https://doi.org/10.3390/cells11233720 [DOI: 10.3390/cells11233720]
  84. Phillips MJ, Walker TA, Choi H-Y, Faulkner AE, Kim MK, Sidney SS, Boyd AP, Nickerson JM, Boatright JH, Pardue MT (2008) Tauroursodeoxycholic acid preservation of photoreceptor structure and function in the rd10 mouse through postnatal day 30. Invest Ophthalmol Vis Sci 49(5):2148���2155. https://doi.org/10.1167/iovs.07-1012 [DOI: 10.1167/iovs.07-1012]
  85. Piotter E, McClements ME, MacLaren RE (2021) Therapy approaches for stargardt disease. Biomolecules 11(8):1179. https://doi.org/10.3390/biom11081179 [DOI: 10.3390/biom11081179]
  86. Prelle K, Zink N, Wolf E (2002) Pluripotent stem cells���model of embryonic development, tool for gene targeting, and basis of cell therapy. Anat Histol Embryol 31(3):169���186. https://doi.org/10.1046/j.1439-0264.2002.00388.x [DOI: 10.1046/j.1439-0264.2002.00388.x]
  87. Quigley HA, Iglesia DS (2004) Stem cells to replace the optic nerve. Eye 18(11):1085���1088. https://doi.org/10.1038/sj.eye.6701577 [DOI: 10.1038/sj.eye.6701577]
  88. Quigley HA, McKinnon SJ, Zack DJ, Pease ME, Kerrigan-Baumrind LA, Kerrigan DF, Mitchell RS (2000) Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Invest Ophthalmol Vis Sci 41(11):3460���3466
  89. Ribeiro J, Procyk CA, West EL, O���Hara-Wright M, Martins MF, Khorasani MM, Hare A, Basche M, Fernando M, Goh D, Jumbo N, Rizzi M, Powell K, Tariq M, Michaelides M, Bainbridge JWB, Smith AJ, Pearson RA, Gonzalez-Cordero A, Ali RR (2021) Restoration of visual function in advanced disease after transplantation of purified human pluripotent stem cell-derived cone photoreceptors. Cell Rep 35(3):109022. https://doi.org/10.1016/j.celrep.2021.109022 [DOI: 10.1016/j.celrep.2021.109022]
  90. Rodrigues CM, Fan G, Wong PY, Kren BT, Steer CJ (1998) Ursodeoxycholic acid may inhibit deoxycholic acid-induced apoptosis by modulating mitochondrial transmembrane potential and reactive oxygen species production. Mol Med 4(3):165���178
  91. Roubeix C, Godefroy D, Mias C, Sapienza A, Riancho L, Degardin J, Fradot V, Ivkovic I, Picaud S, Sennlaub F, Denoyer A, Rostene W, Sahel JA, Parsadaniantz SM, Brignole-Baudouin F, Baudouin C (2015) Intraocular pressure reduction and neuroprotection conferred by bone marrow-derived mesenchymal stem cells in an animal model of glaucoma. Stem Cell Res Ther 6(1):177. https://doi.org/10.1186/s13287-015-0168-0 [DOI: 10.1186/s13287-015-0168-0]
  92. Roy S, Ha J, Trudeau K, Beglova E (2010) Vascular basement membrane thickening in diabetic retinopathy. Curr Eye Res 35(12):1045���1056. https://doi.org/10.3109/02713683.2010.514659 [DOI: 10.3109/02713683.2010.514659]
  93. Sacc�� SC, Pulliero A, Izzotti A (2015) The dysfunction of the trabecular meshwork during glaucoma course. J Cell Physiol 230(3):510���525. https://doi.org/10.1002/jcp.24826 [DOI: 10.1002/jcp.24826]
  94. Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, Hubschman J-P, Davis JL, Heilwell G, Spirn M, Maguire J, Gay R, Bateman J, Ostrick RM, Morris D, Vincent M, Anglade E, Del Priore LV, Lanza R (2015) Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt���s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet (London, England) 385(9967):509���516. https://doi.org/10.1016/S0140-6736(14)61376-3 [DOI: 10.1016/S0140-6736(14)61376-3]
  95. Seyedrazizadeh S-Z, Poosti S, Nazari A, Alikhani M, Shekari F, Pakdel F, Shahpasand K, Satarian L, Baharvand H (2020) Extracellular vesicles derived from human ES-MSCs protect retinal ganglion cells and preserve retinal function in a rodent model of optic nerve injury. Stem Cell Res Ther 11(1):203. https://doi.org/10.1186/s13287-020-01702-x [DOI: 10.1186/s13287-020-01702-x]
  96. Sharma A, Jaganathan BG (2021) Stem cell therapy for retinal degeneration: the evidence to date. Biologics Targets Ther 15:299���306. https://doi.org/10.2147/BTT.S290331 [DOI: 10.2147/BTT.S290331]
  97. Sharma K, Krohne TU, Busskamp V (2020) The rise of retinal organoids for vision research. Int J Mol Sci 21(22):8484. https://doi.org/10.3390/ijms21228484 [DOI: 10.3390/ijms21228484]
  98. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5(2):146���156. https://doi.org/10.1038/nrn1326 [DOI: 10.1038/nrn1326]
  99. Sivaprasad S, Pearce E (2019) The unmet need for better risk stratification of non-proliferative diabetic retinopathy. Diabet Med 36(4):424���433. https://doi.org/10.1111/dme.13868 [DOI: 10.1111/dme.13868]
  100. Smith PD, Sun F, Park KK, Cai B, Wang C, Kuwako K, Martinez-Carrasco I, Connolly L, He Z (2009) SOCS3 deletion promotes optic nerve regeneration in vivo. Neuron 64(5):617���623. https://doi.org/10.1016/j.neuron.2009.11.021 [DOI: 10.1016/j.neuron.2009.11.021]
  101. Sohn EH, van Dijk HW, Jiao C, Kok PHB, Jeong W, Demirkaya N, Garmager A, Wit F, Kucukevcilioglu M, van Velthoven MEJ, DeVries JH, Mullins RF, Kuehn MH, Schlingemann RO, Sonka M, Verbraak FD, Abr��moff MD (2016) Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci 113(19):E2655���E2664. https://doi.org/10.1073/pnas.1522014113 [DOI: 10.1073/pnas.1522014113]
  102. Song WK, Park K-M, Kim H-J, Lee JH, Choi J, Chong SY, Shim SH, Del Priore LV, Lanza R (2015) Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients. Stem Cell Rep 4(5):860���872. https://doi.org/10.1016/j.stemcr.2015.04.005 [DOI: 10.1016/j.stemcr.2015.04.005]
  103. Song MJ, Quinn R, Nguyen E, Hampton C, Sharma R, Park TS, Koster C, Voss T, Tristan C, Weber C, Singh A, Dejene R, Bose D, Chen Y-C, Derr P, Derr K, Michael S, Barone F, Chen G et al (2023) Bioprinted 3D outer retina barrier uncovers RPE-dependent choroidal phenotype in advanced macular degeneration. Nat Methods 20(1):149���161. https://doi.org/10.1038/s41592-022-01701-1 [DOI: 10.1038/s41592-022-01701-1]
  104. Southey MWY, Brunavs M (2023) Introduction to small molecule drug discovery and preclinical development. Front Drug Discov 3. https://doi.org/10.3389/fddsv.2023.1314077
  105. Suen HC, Qian Y, Liao J, Luk CS, Lee WT, Ng JKW, Chan TTH, Hou HW, Li I, Li K, Chan W-Y, Feng B, Gao L, Jiang X, Liu YH, Rudd JA, Hobbs R, Qi H, Ng TK et al (2019) Transplantation of retinal ganglion cells derived from male germline stem cell as a potential treatment to glaucoma. Stem Cells Dev 28(20):1365���1375. https://doi.org/10.1089/scd.2019.0060 [DOI: 10.1089/scd.2019.0060]
  106. Sugita S, Mandai M, Hirami Y, Takagi S, Maeda T, Fujihara M, Matsuzaki M, Yamamoto M, Iseki K, Hayashi N, Hono A, Fujino S, Koide N, Sakai N, Shibata Y, Terada M, Nishida M, Dohi H, Nomura M et al (2020) HLA-matched allogeneic iPS cells-derived RPE transplantation for macular degeneration. J Clin Med 9(7):Article 7. https://doi.org/10.3390/jcm9072217 [DOI: 10.3390/jcm9072217]
  107. Sui S, Yu H, Wang X, Wang W, Yang X, Pan X, Zhou Q, Xin C, Du R, Wu S, Zhang J, Cao Q, Wang N, Kuehn MH, Zhu W (2021) iPSC-derived trabecular meshwork cells stimulate endogenous TM cell division through gap junction in a mouse model of glaucoma. Invest Ophthalmol Vis Sci 62(10):28. https://doi.org/10.1167/iovs.62.10.28 [DOI: 10.1167/iovs.62.10.28]
  108. Sun Y, Williams A, Waisbourd M, Iacovitti L, Katz LJ (2015) Stem cell therapy for glaucoma: science or snake oil? Surv Ophthalmol 60(2):93���105. https://doi.org/10.1016/j.survophthal.2014.07.001 [DOI: 10.1016/j.survophthal.2014.07.001]
  109. Tanaka T, Yokoi T, Tamalu F, Watanabe S-I, Nishina S, Azuma N (2016) Generation of retinal ganglion cells with functional axons from mouse embryonic stem cells and induced pluripotent stem cells. Invest Ophthalmol Vis Sci 57(7):3348���3359. https://doi.org/10.1167/iovs.16-19166 [DOI: 10.1167/iovs.16-19166]
  110. Tatour Y, Ben-Yosef T (2020) Syndromic inherited retinal diseases: genetic, clinical and diagnostic aspects. Diagnostics 10(10):779. https://doi.org/10.3390/diagnostics10100779 [DOI: 10.3390/diagnostics10100779]
  111. Tezel G (2006) Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog Retin Eye Res 25(5):490���513. https://doi.org/10.1016/j.preteyeres.2006.07.003 [DOI: 10.1016/j.preteyeres.2006.07.003]
  112. Tham Y-C, Li X, Wong TY, Quigley HA, Aung T, Cheng C-Y (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121(11):2081���2090. https://doi.org/10.1016/j.ophtha.2014.05.013 [DOI: 10.1016/j.ophtha.2014.05.013]
  113. Tirendi S, Sacc�� SC, Vernazza S, Traverso C, Bassi AM, Izzotti A (2020) A 3D model of human trabecular meshwork for the research study of glaucoma. Front Neurol 11. https://doi.org/10.3389/fneur.2020.591776
  114. Tuekprakhon A, Sangkitporn S, Trinavarat A, Pawestri AR, Vamvanij V, Ruangchainikom M, Luksanapruksa P, Pongpaksupasin P, Khorchai A, Dambua A, Boonchu P, Yodtup C, Uiprasertkul M, Sangkitporn S, Atchaneeyasakul L (2021) Intravitreal autologous mesenchymal stem cell transplantation: a non-randomized phase I clinical trial in patients with retinitis pigmentosa. Stem Cell Res Ther 12:52. https://doi.org/10.1186/s13287-020-02122-7 [DOI: 10.1186/s13287-020-02122-7]
  115. van Adel BA, Kostic C, D��glon N, Ball AK, Arsenijevic Y (2003) Delivery of ciliary neurotrophic factor via lentiviral-mediated transfer protects axotomized retinal ganglion cells for an extended period of time. Hum Gene Ther 14(2):103���115. https://doi.org/10.1089/104303403321070801 [DOI: 10.1089/104303403321070801]
  116. Veiga Reis F, Dalgalarrondo P, da Silva Tavares Neto JE, Wendeborn Rodrigues M, Scott IU, Jorge R (2023) Combined intravitreal dexamethasone and bevacizumab injection for the treatment of persistent diabetic macular edema (DexaBe study): a phase I clinical study. Int J Retina Vitreous 9:13. https://doi.org/10.1186/s40942-023-00449-w [DOI: 10.1186/s40942-023-00449-w]
  117. Wang L, Shah SM, Mangwani-Mordani S, Gregori NZ (2023) Updates on emerging interventions for autosomal recessive ABCA4-associated stargardt disease. J Clin Med 12(19):6229. https://doi.org/10.3390/jcm12196229 [DOI: 10.3390/jcm12196229]
  118. Weinreb RN, Aung T, Medeiros FA (2014) The pathophysiology and treatment of glaucoma: a review. JAMA 311(18):1901���1911. https://doi.org/10.1001/jama.2014.3192 [DOI: 10.1001/jama.2014.3192]
  119. Wen R, Tao W, Li Y, Sieving PA (2012) CNTF and retina. Prog Retin Eye Res 31(2):136���151. https://doi.org/10.1016/j.preteyeres.2011.11.005 [DOI: 10.1016/j.preteyeres.2011.11.005]
  120. Wi��cek MP, Gos��awski W, Grabowicz A, Sobu�� A, Kawa MP, Baumert B, Paczkowska E, Milczarek S, Os��kowska B, Safranow K, Zawi��lak A, Lubi��ski W, Machali��ski B, Machali��ska A (2021) Long-term effects of adjuvant intravitreal treatment with autologous bone marrow-derived lineage-negative cells in retinitis pigmentosa. Stem Cells Int 2021:6631921. https://doi.org/10.1155/2021/6631921 [DOI: 10.1155/2021/6631921]
  121. Wilkins A, Chandran S, Compston A (2001) A role for oligodendrocyte-derived IGF-1 in trophic support of cortical neurons. Glia 36(1):48���57. https://doi.org/10.1002/glia.1094 [DOI: 10.1002/glia.1094]
  122. Wilkins A, Majed H, Layfield R, Compston A, Chandran S (2003) Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms: a novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor. J Neurosci Off J Soc Neurosci 23(12):4967���4974. https://doi.org/10.1523/JNEUROSCI.23-12-04967.2003 [DOI: 10.1523/JNEUROSCI.23-12-04967.2003]
  123. Won JY, Kim J, Gao G, Kim J, Jang J, Park Y-H, Cho D-W (2020) 3D printing of drug-loaded multi-shell rods for local delivery of bevacizumab and dexamethasone: a synergetic therapy for retinal vascular diseases. Acta Biomater 116:174���185. https://doi.org/10.1016/j.actbio.2020.09.015 [DOI: 10.1016/j.actbio.2020.09.015]
  124. Wordinger RJ, Clark AF, Agarwal R, Lambert W, McNatt L, Wilson SE, Qu Z, Fung BK (1998) Cultured human trabecular meshwork cells express functional growth factor receptors. Invest Ophthalmol Vis Sci 39(9):1575���1589
  125. Xiong S, Kumar A, Tian S, Taher EE, Yang E, Kinchington PR, Xia X, Du Y (2021) Stem cell transplantation rescued a primary open-angle glaucoma mouse model. elife 10:e63677. https://doi.org/10.7554/eLife.63677 [DOI: 10.7554/eLife.63677]
  126. Xu H, Chen M, Forrester JV (2009) Para-inflammation in the aging retina. Prog Retin Eye Res 28(5):348���368. https://doi.org/10.1016/j.preteyeres.2009.06.001 [DOI: 10.1016/j.preteyeres.2009.06.001]
  127. Yun H, Wang Y, Zhou Y, Kumar A, Wang K, Sun M, Stolz DB, Xia X, Ethier CR, Du Y (2018) Human stem cells home to and repair laser-damaged trabecular meshwork in a mouse model. Commun Biol 1(1):1���14. https://doi.org/10.1038/s42003-018-0227-z [DOI: 10.1038/s42003-018-0227-z]
  128. Zhang T, Baehr W, Fu Y (2012) Chemical chaperone TUDCA preserves cone photoreceptors in a mouse model of leber congenital amaurosis. Invest Ophthalmol Vis Sci 53(7):3349���3356. https://doi.org/10.1167/iovs.12-9851 [DOI: 10.1167/iovs.12-9851]
  129. Zhou Y, Xia X, Yang E, Wang Y, Marra KG, Ethier CR, Schuman JS, Du Y (2020) Adipose-derived stem cells integrate into trabecular meshwork with glaucoma treatment potential. FASEB J 34(5):7160���7177. https://doi.org/10.1096/fj.201902326R [DOI: 10.1096/fj.201902326R]
  130. Zhu W, Gramlich OW, Laboissonniere L, Jain A, Sheffield VC, Trimarchi JM, Tucker BA, Kuehn MH (2016) Transplantation of iPSC-derived TM cells rescues glaucoma phenotypes in vivo. Proc Natl Acad Sci 113(25):E3492���E3500. https://doi.org/10.1073/pnas.1604153113 [DOI: 10.1073/pnas.1604153113]
  131. Zhu W, Jain A, Gramlich OW, Tucker BA, Sheffield VC, Kuehn MH (2017) Restoration of aqueous humor outflow following transplantation of iPSC-derived trabecular meshwork cells in a transgenic mouse model of glaucoma. Invest Ophthalmol Vis Sci 58(4):2054���2062. https://doi.org/10.1167/iovs.16-20672 [DOI: 10.1167/iovs.16-20672]

Word Cloud

Created with Highcharts 10.0.0retinaldiseasescellsRetinalcelltherapy3DtherapiesRegenerativebioprintingglaucomatousapproachesrestoringpotentialregenerativestemmedicineadvancementsconditionsincludingcomplexdysfunctiondiseaseThischapteremergingstrategieschallengesdeliveryholdAdvancesorganoidsinnovativemeshworkTMganglionStemCellGlaucomarepresentpromisingaddressingdiabeticretinopathyDRage-relatedmaculardegenerationAMDinheriteddegenerationsIRDsopticneuropathypathophysiologiesinvolveneurodegenerationoxidativestressvascularDespitesignificantprogressconventionalanti-VEGFinjectionslaserphotocoagulationintraocularpressureIOP-loweringinterventionsremainlimitedreversingprogressionlostvisualfunctionexploresfillcriticalgapsreplacementusinghumanembryonichESCsinducedpluripotentiPSCsmesenchymalMSCsdemonstratedencouragingoutcomesclinicaltrialsthoughlong-termintegrationpersistSimilarlyneuroprotectiveuseprogenitorpromisepreservingvisiondegenerativeaugmenteffortsofferingtoolsmodelingdevelopmentInglaucomatargetingtrabecularRGClossgainingtractioncell-basedshownfunctionalityprovidingneuroprotectionsystemsbioengineeredplatformsaimenhancetherapeuticefficacysafetyprovidesoverviewevolvinglandscapehighlightingcurrentongoingfuturedirectionsfieldstilltransformmanagementocularMedicineTherapyBioprintingDiseasesNeuroprotectionregenerationTrabecular

Similar Articles

Cited By