Genomic Insights into Cobweb Disease Resistance in : A Comparative Analysis of Resistant and Susceptible Strains.

Guohui Cheng, Xiaoya An, Yueting Dai, Changtian Li, Yu Li
Author Information
  1. Guohui Cheng: Department of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China. ORCID
  2. Xiaoya An: Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China. ORCID
  3. Yueting Dai: Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China. ORCID
  4. Changtian Li: Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China. ORCID
  5. Yu Li: Department of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.

Abstract

, a globally cultivated edible fungus, faces significant challenges from fungal diseases like cobweb disease caused by , which severely impacts yield. This study aimed to explore the genetic basis of disease resistance in by comparing the genomes of a susceptible strain (AB7) and a resistant strain (AB58). Whole-genome sequencing of AB7 was performed using PacBio Sequel SMRT technology, and comparative genomic analyses were conducted alongside AB58 and other fungal hosts of . Comparative genomic analyses revealed distinct resistance features in AB58, including enriched regulatory elements, specific deletions in AB7 affecting carbohydrate-active enzymes (CAZymes), and unique cytochrome P450 (CYP) profiles. Notably, AB58 harbored more cytochrome P450 genes related to fatty acid metabolism and unique NI-siderophore synthetase genes, contributing to its enhanced environmental adaptability and disease resistance. Pan-genome analysis highlighted significant genetic diversity, with strain-specific genes enriched in pathways like aflatoxin biosynthesis and ether lipid metabolism, suggesting distinct evolutionary adaptations. These findings provide valuable insights into the genetic basis underlying disease resistance in , offering a foundation for future breeding strategies to improve fungal crop resilience.

Keywords

References

  1. Mol Plant Microbe Interact. 2022 Aug;35(8):681-693 [PMID: 35343247]
  2. Mol Plant. 2023 Nov 6;16(11):1733-1742 [PMID: 37740491]
  3. Nucleic Acids Res. 2000 Jan 1;28(1):45-8 [PMID: 10592178]
  4. Fungal Genet Biol. 2015 Apr;77:69-81 [PMID: 25881912]
  5. Toxins (Basel). 2020 Feb 28;12(3): [PMID: 32121226]
  6. Front Microbiol. 2019 Aug 13;10:1786 [PMID: 31456761]
  7. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W465-7 [PMID: 15980513]
  8. Fungal Genet Biol. 2016 Aug;93:35-45 [PMID: 27288752]
  9. Bioinformatics. 2012 Dec 1;28(23):3150-2 [PMID: 23060610]
  10. Annu Rev Phytopathol. 2017 Aug 4;55:505-536 [PMID: 28777926]
  11. J Fungi (Basel). 2023 Mar 27;9(4): [PMID: 37108865]
  12. Int J Mol Sci. 2019 Jan 15;20(2): [PMID: 30650550]
  13. Nucleic Acids Res. 2017 Jan 4;45(D1):D566-D573 [PMID: 27789705]
  14. BMC Genomics. 2022 Feb 10;23(1):118 [PMID: 35144544]
  15. Mol Plant. 2021 Dec 6;14(12):2032-2055 [PMID: 34384905]
  16. Appl Environ Microbiol. 2000 Apr;66(4):1741-3 [PMID: 10742274]
  17. Nucleic Acids Res. 2008 Apr;36(7):2284-94 [PMID: 18287116]
  18. Genome Biol. 2006;7 Suppl 1:S10.1-12 [PMID: 16925832]
  19. Nat Protoc. 2008;3(2):153-62 [PMID: 18274516]
  20. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  21. Bioinformatics. 2017 Aug 15;33(16):2583-2585 [PMID: 28398459]
  22. Plant Dis. 2024 Feb;108(2):473-485 [PMID: 37669175]
  23. Protein Cell. 2018 Feb;9(2):196-206 [PMID: 28523433]
  24. Nucleic Acids Res. 2015 Jan;43(Database issue):D261-9 [PMID: 25428365]
  25. New Phytol. 2019 Oct;224(2):902-915 [PMID: 31257601]
  26. Nucleic Acids Res. 1997 Mar 1;25(5):955-64 [PMID: 9023104]
  27. Mycobiology. 2020 Dec 17;49(1):61-68 [PMID: 33536813]
  28. Crit Rev Biochem Mol Biol. 2014 Jan-Feb;49(1):16-32 [PMID: 24164576]
  29. Genome Res. 2004 May;14(5):988-95 [PMID: 15123596]
  30. J Fungi (Basel). 2023 Apr 18;9(4): [PMID: 37108939]
  31. Nat Microbiol. 2020 Aug;5(8):1002-1010 [PMID: 32393858]
  32. Mol Plant Pathol. 2010 Sep;11(5):585-95 [PMID: 20695998]
  33. Nucleic Acids Res. 2015 Jul 1;43(W1):W39-49 [PMID: 25953851]
  34. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  35. Bioinformatics. 2002 Jan;18(1):77-82 [PMID: 11836214]
  36. Science. 2014 Dec 12;346(6215):1311-20 [PMID: 25504712]
  37. Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8 [PMID: 18838391]
  38. J Agric Food Chem. 2018 Apr 11;66(14):3716-3725 [PMID: 29584419]
  39. Appl Environ Microbiol. 2012 Apr;78(7):2435-42 [PMID: 22247161]
  40. Fungal Biol. 2011 Apr-May;115(4-5):421-31 [PMID: 21530924]
  41. Nucleic Acids Res. 1999 Jan 15;27(2):573-80 [PMID: 9862982]
  42. J Fungi (Basel). 2022 May 29;8(6): [PMID: 35736064]
  43. Microb Biotechnol. 2015 Nov;8(6):918-29 [PMID: 25824278]
  44. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  45. Proc Natl Acad Sci U S A. 2023 Mar 7;120(10):e2214076120 [PMID: 36848567]
  46. Sci Rep. 2018 Jul 2;8(1):9982 [PMID: 29967427]
  47. Nucleic Acids Res. 2003 Oct 1;31(19):5654-66 [PMID: 14500829]
  48. Fungal Genet Biol. 1998 Mar;23(2):181-8 [PMID: 9578631]
  49. Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9451-9457 [PMID: 32300014]
  50. Mol Biol Evol. 2016 Apr;33(4):959-70 [PMID: 26659563]
  51. Genome Res. 2009 Sep;19(9):1639-45 [PMID: 19541911]
  52. BMC Genomics. 2008 Aug 28;9:402 [PMID: 18755027]
  53. Nat Biotechnol. 2019 Oct;37(10):1155-1162 [PMID: 31406327]
  54. Nucleic Acids Res. 2022 Jan 7;50(D1):D1483-D1490 [PMID: 34850118]
  55. Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9923-8 [PMID: 24958869]
  56. PLoS Biol. 2022 Nov 17;20(11):e3001890 [PMID: 36395320]
  57. RSC Adv. 2019 May 14;9(26):14758-14765 [PMID: 35516343]
  58. J Biol Chem. 2015 Nov 13;290(46):27438-50 [PMID: 26342082]
  59. Nucleic Acids Res. 2023 Jul 5;51(W1):W46-W50 [PMID: 37140036]
  60. Can J Microbiol. 2006 Oct;52(10):961-7 [PMID: 17110964]
  61. Nucleic Acids Res. 2014 Jul;42(Web Server issue):W252-8 [PMID: 24782522]
  62. Sci Adv. 2025 Jan 17;11(3):eadq5038 [PMID: 39813347]
  63. Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17501-6 [PMID: 23045686]
  64. Genome Biol. 2008 Jan 11;9(1):R7 [PMID: 18190707]
  65. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D277-80 [PMID: 14681412]
  66. Nature. 1993 Sep 23;365(6444):362-4 [PMID: 8377830]
  67. Bioinformatics. 2009 May 15;25(10):1335-7 [PMID: 19307242]
  68. Int J Mol Sci. 2016 Sep 22;17(10): [PMID: 27669211]
  69. Nucleic Acids Res. 2009 Jan;37(Database issue):D136-40 [PMID: 18953034]
  70. Mol Biol Evol. 2018 Mar 1;35(3):543-548 [PMID: 29220515]
  71. J Hered. 2002 Jan-Feb;93(1):77-8 [PMID: 12011185]
  72. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W321-6 [PMID: 15215403]
  73. Bioinformatics. 2004 Nov 1;20(16):2878-9 [PMID: 15145805]
  74. Nature. 2016 Apr 21;532(7599):293 [PMID: 27111611]
  75. Antonie Van Leeuwenhoek. 2013 Mar;103(3):539-50 [PMID: 23100063]
  76. Nucleic Acids Res. 2017 Jan 4;45(D1):D1040-D1045 [PMID: 27924042]
  77. BMC Bioinformatics. 2004 May 14;5:59 [PMID: 15144565]

Grants

  1. CARS-20/Ministry of Agriculture and Rural Affairs of the People's Republic of China
  2. U20A2046/National Natural Science Foundation of China
  3. Ti��nch�� Y��ngc��i/Science&Technology Department of Xinjiang Uygur Autonomous Region
  4. 20230101272JC/Jilin Provincial Department of Science and Technology

Word Cloud

Created with Highcharts 10.0.0resistancediseaseAB58fungalgeneticAB7genesmetabolismsignificantlikebasisstraingenomicanalysesComparativedistinctenrichedCAZymesuniquecytochromeP450fattyacidNI-siderophoregloballycultivatedediblefungusfaceschallengesdiseasescobwebcausedseverelyimpactsyieldstudyaimedexplorecomparinggenomessusceptibleresistantWhole-genomesequencingperformedusingPacBioSequelSMRTtechnologycomparativeconductedalongsidehostsrevealedfeaturesincludingregulatoryelementsspecificdeletionsaffectingcarbohydrate-activeenzymesCYPprofilesNotablyharboredrelatedsynthetasecontributingenhancedenvironmentaladaptabilityPan-genomeanalysishighlighteddiversitystrain-specificpathwaysaflatoxinbiosynthesisetherlipidsuggestingevolutionaryadaptationsfindingsprovidevaluableinsightsunderlyingofferingfoundationfuturebreedingstrategiesimprovecropresilienceGenomicInsightsCobwebDiseaseResistance:AnalysisResistantSusceptibleStrainsCYPsbuttonmushroompan-genomedetermination

Similar Articles

Cited By