Biomonitoring-Based Risk Assessment of Pyrethroid Exposure in the U.S. Population: Application of High-Throughput and Physiologically Based Kinetic Models.

Nan-Hung Hsieh, Eric S C Kwok
Author Information
  1. Nan-Hung Hsieh: Human Exposure & Health Effects Modeling Section, Human Health Assessment Branch, Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, CA 95814, USA. ORCID
  2. Eric S C Kwok: Human Exposure & Health Effects Modeling Section, Human Health Assessment Branch, Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, CA 95814, USA.

Abstract

Pyrethroid insecticides have been extensively utilized in agriculture and residential areas in the United States. This study evaluated the exposure risk by age using available biomonitoring data. We analyzed pyrethroid metabolite concentrations in urine using the National Health and Nutrition Examination Survey (NHANES) data. Reverse dosimetry was conducted with a high-throughput model and a physiologically based kinetic (PBK) model integrated with a Bayesian inference framework. We further derived Benchmark Dose (BMD) values and systemic points of departure in rats using Bayesian BMD and PBK models. Margins of exposure (MOE) were calculated to assess neurotoxic risk based on estimated daily oral intake and dose metrics in plasma and brain. Results from both models indicated that young children have higher pyrethroid exposure compared to other age groups. All estimated risk values were within acceptable levels of acute neurotoxic effect. Additionally, MOEs calculated from oral doses were lower than those derived from internal doses, highlighting that traditional external exposure assessments tend to overestimate risk compared to advanced internal dose-based techniques. In conclusion, combining high-throughput and PBK approaches enhances the understanding of human health risks associated with pyrethroid exposures, demonstrating their potential for future applications in exposure tracking and health risk assessment.

Keywords

References

  1. Toxicology. 2017 Dec 1;392:119-129 [PMID: 28288858]
  2. Environ Res. 2019 May;172:399-407 [PMID: 30825691]
  3. Toxics. 2024 Nov 12;12(11): [PMID: 39590991]
  4. Environ Res. 2024 Jun 15;251(Pt 1):118606 [PMID: 38460660]
  5. Int J Environ Res Public Health. 2021 Nov 16;18(22): [PMID: 34831761]
  6. Toxicol Sci. 2012 Nov;130(1):33-47 [PMID: 22859315]
  7. J Expo Anal Environ Epidemiol. 2005 Mar;15(2):164-71 [PMID: 15187987]
  8. Regul Toxicol Pharmacol. 2018 Feb;92:29-38 [PMID: 29113940]
  9. Int J Hyg Environ Health. 2020 Jan;223(1):267-280 [PMID: 31523017]
  10. J Expo Sci Environ Epidemiol. 2017 Nov;27(6):582-590 [PMID: 27703149]
  11. J Expo Sci Environ Epidemiol. 2012 May-Jun;22(3):267-73 [PMID: 22434114]
  12. Sci Total Environ. 1997 Jun 20;199(1-2):173-81 [PMID: 9200861]
  13. Risk Anal. 2007 Aug;27(4):947-59 [PMID: 17958503]
  14. Int J Hyg Environ Health. 2023 Mar;248:114097 [PMID: 36577283]
  15. J Expo Sci Environ Epidemiol. 2011 May-Jun;21(3):317-27 [PMID: 20407476]
  16. Environ Health Perspect. 2000 Jun;108(6):505-14 [PMID: 10856023]
  17. Toxicol Appl Pharmacol. 2010 Apr 15;244(2):208-17 [PMID: 20045431]
  18. Toxicol Sci. 2006 Oct;93(2):432-42 [PMID: 16831841]
  19. J Expo Sci Environ Epidemiol. 2007 Jul;17(4):350-7 [PMID: 16788681]
  20. J Expo Sci Environ Epidemiol. 2011 Mar-Apr;21(2):150-68 [PMID: 20145679]
  21. Environ Health Perspect. 2008 Aug;116(8):1040-6 [PMID: 18709138]
  22. Toxicol Sci. 2019 Jun 1;169(2):365-379 [PMID: 30768128]
  23. Chemosphere. 2017 Oct;184:1194-1201 [PMID: 28672700]
  24. Chemosphere. 2013 Mar;90(11):2705-13 [PMID: 23270708]
  25. Toxicol Sci. 2020 Jan 1;173(1):86-99 [PMID: 31593217]
  26. J Appl Toxicol. 2015 Dec;35(12):1586-93 [PMID: 25772368]
  27. Xenobiotica. 1992 Aug;22(8):983-91 [PMID: 1413886]
  28. Environ Health Perspect. 2018 Jan 11;126(1):017002 [PMID: 29329100]
  29. Toxicol Lett. 2019 Sep 15;312:125-138 [PMID: 31077771]
  30. Toxics. 2022 Aug 04;10(8): [PMID: 36006130]
  31. Toxicol Lett. 2015 Jan 22;232(2):369-75 [PMID: 25498136]
  32. Environ Health Perspect. 2010 Jun;118(6):742-8 [PMID: 20129874]
  33. Toxicology. 2011 Nov 28;290(1):1-6 [PMID: 21854826]
  34. J Expo Sci Environ Epidemiol. 2007 Jul;17(4):400-7 [PMID: 17051137]
  35. Environ Res. 2021 Jan;192:110281 [PMID: 33031810]
  36. Environ Sci Technol. 2019 Jan 15;53(2):719-732 [PMID: 30516957]
  37. Crit Rev Toxicol. 2018 Apr;48(4):297-311 [PMID: 29389244]
  38. J Expo Sci Environ Epidemiol. 2012 Jul;22(4):398-408 [PMID: 22588214]
  39. Sci Total Environ. 2015 Nov 15;533:102-9 [PMID: 26151654]
  40. Environ Sci Technol. 2014;48(3):1931-9 [PMID: 24422434]
  41. J Expo Sci Environ Epidemiol. 2022 Nov;32(6):877-884 [PMID: 36347933]
  42. Chemosphere. 2023 Aug;331:138798 [PMID: 37137393]
  43. Bioinformatics. 2009 Jun 1;25(11):1453-4 [PMID: 19304877]
  44. Toxicol Lett. 2012 Aug 13;213(1):35-8 [PMID: 21545831]
  45. J Toxicol Environ Health A. 2006 Sep;69(18):1727-56 [PMID: 16864423]
  46. J Expo Sci Environ Epidemiol. 2022 Nov;32(6):783-793 [PMID: 36347934]
  47. Environ Health Perspect. 2009 Oct;117(10):1563-70 [PMID: 20019907]
  48. Toxicol Sci. 2020 Aug 1;176(2):460-469 [PMID: 32421774]
  49. Mamm Genome. 2018 Feb;29(1-2):182-189 [PMID: 29299621]
  50. JAMA Intern Med. 2020 Mar 1;180(3):367-374 [PMID: 31886824]
  51. Environ Res. 2022 Nov;214(Pt 4):114186 [PMID: 36030920]
  52. Environ Sci Technol. 2014 Nov 4;48(21):12750-9 [PMID: 25222184]
  53. Regul Toxicol Pharmacol. 2007 Feb;47(1):96-109 [PMID: 17030369]
  54. Environ Health Perspect. 2017 Sep 12;125(9):097009 [PMID: 28934096]
  55. Environ Health Perspect. 2015 Oct;123(10):919-27 [PMID: 25859901]
  56. Environ Int. 2014 Dec;73:304-11 [PMID: 25192887]
  57. J Expo Sci Environ Epidemiol. 2022 Nov;32(6):833-846 [PMID: 35978002]
  58. Regul Toxicol Pharmacol. 2010 Jun;57(1):103-16 [PMID: 20122977]
  59. Sci Data. 2018 Jul 10;5:180125 [PMID: 29989593]
  60. Regul Toxicol Pharmacol. 2010 Feb;56(1):28-37 [PMID: 19854234]
  61. Xenobiotica. 1997 Dec;27(12):1273-83 [PMID: 9460232]
  62. Environ Health Perspect. 2024 Jan;132(1):17009 [PMID: 38285237]
  63. Environ Sci Technol. 2013 Aug 6;47(15):8479-88 [PMID: 23758710]
  64. Toxicol Sci. 2006 Jan;89(1):271-7 [PMID: 16221961]
  65. Environ Res. 2007 Jun;104(2):266-74 [PMID: 17258193]

Word Cloud

Created with Highcharts 10.0.0exposureriskusingpyrethroidPBKPyrethroidagedatadosimetryhigh-throughputmodelbasedBayesianderivedBMDvaluesmodelscalculatedneurotoxicestimatedoralcompareddosesinternalhealthinsecticidesextensivelyutilizedagricultureresidentialareasUnitedStatesstudyevaluatedavailablebiomonitoringanalyzedmetaboliteconcentrationsurineNationalHealthNutritionExaminationSurveyNHANESReverseconductedphysiologicallykineticintegratedinferenceframeworkBenchmarkDosesystemicpointsdepartureratsMarginsMOEassessdailyintakedosemetricsplasmabrainResultsindicatedyoungchildrenhighergroupswithinacceptablelevelsacuteeffectAdditionallyMOEslowerhighlightingtraditionalexternalassessmentstendoverestimateadvanceddose-basedtechniquesconclusioncombiningapproachesenhancesunderstandinghumanrisksassociatedexposuresdemonstratingpotentialfutureapplicationstrackingassessmentBiomonitoring-BasedRiskAssessmentExposureUSPopulation:ApplicationHigh-ThroughputPhysiologicallyBasedKineticModelsbayesianpyrethroidsreverseurinarymetabolites

Similar Articles

Cited By