Effects of Live and Peptide-Based Antimicrobiota Vaccines on Fitness, Microbiota, and Acquisition of Tick-Borne Pathogens.

Apolline Maitre, Lourdes Mateos-Hernandez, Myriam Kratou, Natalia Egri, Jennifer Maye, Manel Juan, Adnan Hodžić, Dasiel Obregón, Lianet Abuin-Denis, Elianne Piloto-Sardinas, Andrea C Fogaça, Alejandro Cabezas-Cruz
Author Information
  1. Apolline Maitre: Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, 94700 Maisons-Alfort, France.
  2. Lourdes Mateos-Hernandez: Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, 94700 Maisons-Alfort, France. ORCID
  3. Myriam Kratou: Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Manouba 2010, Tunisia. ORCID
  4. Natalia Egri: Servei d'Immunologia, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, 08036 Barcelona, Spain.
  5. Jennifer Maye: SEPPIC Paris La Défense, 92250 La Garenne Colombes, France.
  6. Manel Juan: Servei d'Immunologia, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, 08036 Barcelona, Spain. ORCID
  7. Adnan Hodžić: Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, 1090 Vienna, Austria.
  8. Dasiel Obregón: School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1H 2W1, Canada. ORCID
  9. Lianet Abuin-Denis: Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, 94700 Maisons-Alfort, France. ORCID
  10. Elianne Piloto-Sardinas: Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, 94700 Maisons-Alfort, France. ORCID
  11. Andrea C Fogaça: Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil.
  12. Alejandro Cabezas-Cruz: Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, 94700 Maisons-Alfort, France. ORCID

Abstract

This study explored the effects of antimicrobiota vaccines on the acquisition of and , and on the microbiota composition of ticks. Using a murine model, we investigated the immunological responses to live and multi-antigenic peptide (MAP) vaccines. Immunized mice were infected with either or , and subsequently infested with pathogen-free nymphs. We monitored the tick feeding behavior, survival rates, and infection levels. Additionally, we employed comprehensive microbiota analyses, including the alpha and beta diversity assessments and microbial co-occurrence network construction. Our results indicate that both live and MAP vaccines elicited significant antibody responses in mice, with notable bactericidal effects against . The vaccination altered the feeding patterns and fitness of the ticks, with the Live vaccine group showing a higher weight and faster feeding time. Microbiota analysis revealed significant shifts in the beta diversity between vaccine groups, with distinct microbial networks and taxa abundances observed. Notably, the MAP vaccine group exhibited a more robust and complex network structure, while the Live vaccine group demonstrated resilience to microbial perturbations. However, the effects of antimicrobiota vaccination on acquisition appeared taxon-dependent, as inferred from our results and previous findings on microbiota-driven pathogen refractoriness. -based vaccines altered the microbiota composition but had no effect on infection, and yielded inconclusive results for . In contrast, previous studies suggest that -based microbiota modulation can induce a pathogen-refractory state, highlighting the importance of both bacterial species and peptide selection in shaping microbiota-driven pathogen susceptibility. However, a direct comparison under identical experimental conditions across multiple taxa is required to confirm this taxon-specific effect. These findings suggest that antimicrobiota vaccination influences tick fitness and microbiota assembly, but its effects on pathogen transmission depend on the bacterial taxon targeted and the selected peptide epitopes. This research provides insights into the need for strategic bacterial taxon selection to enhance vaccine efficacy in controlling tick-borne diseases.

Keywords

References

  1. Curr Med Chem. 2019;26(16):2974-2986 [PMID: 30394204]
  2. Pathog Dis. 2015 Dec;73(9):ftv101 [PMID: 26519448]
  3. Methods Mol Biol. 2007;409:387-94 [PMID: 18450017]
  4. Microbiome. 2023 Jul 24;11(1):151 [PMID: 37482606]
  5. Vet Pathol. 2012 Jan;49(1):32-43 [PMID: 22135019]
  6. Appl Environ Microbiol. 2006 Jul;72(7):5069-72 [PMID: 16820507]
  7. Nucleic Acids Res. 2022 Jul 5;50(W1):W36-W43 [PMID: 35640594]
  8. Microbiome. 2018 Dec 17;6(1):226 [PMID: 30558668]
  9. Nat Rev Microbiol. 2014 Sep;12(9):635-45 [PMID: 25118885]
  10. Infect Immun. 2006 Apr;74(4):2215-23 [PMID: 16552052]
  11. Bioinformatics. 2017 Sep 15;33(18):2938-2940 [PMID: 28645171]
  12. Science. 2003 Feb 7;299(5608):906-9 [PMID: 12574635]
  13. Front Microbiol. 2024 Jan 16;15:1364989 [PMID: 38292250]
  14. Microbiome. 2014 May 05;2:15 [PMID: 24910773]
  15. Mol Ecol. 2023 Aug;32(16):4660-4676 [PMID: 37366236]
  16. Pathogens. 2020 Sep 10;9(9): [PMID: 32927666]
  17. Pharm Biotechnol. 1995;6:141-228 [PMID: 7551218]
  18. J Med Entomol. 2008 Nov;45(6):1156-9 [PMID: 19058642]
  19. Pathogens. 2020 Oct 28;9(11): [PMID: 33126686]
  20. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  21. Proteins. 2006 Oct 1;65(1):40-8 [PMID: 16894596]
  22. PLoS Comput Biol. 2012;8(9):e1002687 [PMID: 23028285]
  23. Immunogenetics. 2020 Feb;72(1-2):109-118 [PMID: 31811313]
  24. Front Cell Infect Microbiol. 2017 Apr 28;7:129 [PMID: 28503490]
  25. BMC Bioinformatics. 2007 Jan 05;8:4 [PMID: 17207271]
  26. Clin Microbiol Rev. 1999 Oct;12(4):633-53 [PMID: 10515907]
  27. Mol Immunol. 2019 Sep;113:115-119 [PMID: 30146122]
  28. Med Microbiol Immunol. 2016 Feb;205(1):47-55 [PMID: 26155981]
  29. Microbiol Mol Biol Rev. 2013 Sep;77(3):342-56 [PMID: 24006468]
  30. PLoS One. 2012;7(10):e46648 [PMID: 23077517]
  31. Infect Immun. 1984 Jan;43(1):143-8 [PMID: 6418657]
  32. Expert Rev Anti Infect Ther. 2010 Jan;8(1):33-50 [PMID: 20014900]
  33. Front Immunol. 2021 Jul 12;12:704621 [PMID: 34322135]
  34. Clin Microbiol Rev. 2020 Jan 2;33(2): [PMID: 31896541]
  35. Exp Appl Acarol. 2016 Jan;68(1):127-37 [PMID: 26612395]
  36. Vaccine. 2007 Jan 15;25(5):856-66 [PMID: 17045707]
  37. Parasit Vectors. 2009 Sep 04;2(1):41 [PMID: 19732416]
  38. Microorganisms. 2021 Nov 25;9(12): [PMID: 34946034]
  39. J Virol. 1985 Sep;55(3):836-9 [PMID: 2991600]
  40. Animals (Basel). 2024 May 24;14(11): [PMID: 38891605]
  41. Cytometry B Clin Cytom. 2021 Jul;100(4):397-401 [PMID: 33052633]
  42. Int J Infect Dis. 2016 Sep;50:10-7 [PMID: 27421818]
  43. PLoS One. 2013 Oct 14;8(10):e77388 [PMID: 24155949]
  44. J Clin Microbiol. 2000 Nov;38(11):4026-33 [PMID: 11060064]
  45. FEMS Immunol Med Microbiol. 2007 Feb;49(1):2-12 [PMID: 17266709]
  46. Parasit Vectors. 2022 Jan 4;15(1):4 [PMID: 34983601]
  47. Parasit Vectors. 2021 Aug 26;14(1):430 [PMID: 34446082]
  48. Heliyon. 2024 Sep 14;10(18):e37931 [PMID: 39323843]
  49. Transbound Emerg Dis. 2020 Mar;67(2):745-757 [PMID: 31630482]
  50. Parasit Vectors. 2022 Jul 9;15(1):248 [PMID: 35810301]
  51. Biologicals. 2001 Sep-Dec;29(3-4):209-13 [PMID: 11851317]
  52. Parasit Vectors. 2018 Mar 6;11(1):145 [PMID: 29510749]
  53. Bioinformation. 2016 Apr 10;12(2):74-77 [PMID: 28104964]
  54. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  55. Sci Rep. 2022 Jul 6;12(1):11464 [PMID: 35794219]
  56. Vaccine. 1997 Mar;15(4):441-8 [PMID: 9141216]
  57. Microbiome. 2018 May 17;6(1):90 [PMID: 29773078]
  58. Nat Rev Microbiol. 2023 Sep;21(9):604-618 [PMID: 37217793]
  59. Dev Comp Immunol. 2020 May;106:103606 [PMID: 31904432]
  60. Microbes Infect. 2018 Aug - Sep;20(7-8):401-409 [PMID: 29287988]
  61. Viruses. 2023 Nov 17;15(11): [PMID: 38005946]
  62. Nat Biotechnol. 2019 Aug;37(8):852-857 [PMID: 31341288]
  63. Vaccines (Basel). 2020 Nov 21;8(4): [PMID: 33233316]

MeSH Term

Animals
Ixodes
Mice
Microbiota
Bacterial Vaccines
Staphylococcus epidermidis
Rickettsia
Tick-Borne Diseases
Female
Vaccines, Subunit
Borrelia burgdorferi Group
Vaccination
Vaccines, Attenuated

Chemicals

Bacterial Vaccines
Vaccines, Subunit
Vaccines, Attenuated

Word Cloud

Created with Highcharts 10.0.0microbiotavaccinesvaccineeffectsantimicrobiotamicrobialtickspeptideMAPfeedingnetworkresultsvaccinationLivegrouppathogenbacterialacquisitioncompositionresponseslivemicetickinfectionbetadiversitysignificantalteredfitnessMicrobiotaanalysistaxaHoweverpreviousfindingsmicrobiota-driven-basedeffectsuggestselectiontaxontick-bornestudyexploredUsingmurinemodelinvestigatedimmunologicalmulti-antigenicImmunizedinfectedeithersubsequentlyinfestedpathogen-freenymphsmonitoredbehaviorsurvivalrateslevelsAdditionallyemployedcomprehensiveanalysesincludingalphaassessmentsco-occurrenceconstructionindicateelicitedantibodynotablebactericidalpatternsshowinghigherweightfastertimerevealedshiftsgroupsdistinctnetworksabundancesobservedNotablyexhibitedrobustcomplexstructuredemonstratedresilienceperturbationsappearedtaxon-dependentinferredrefractorinessyieldedinconclusivecontraststudiesmodulationcaninducepathogen-refractorystatehighlightingimportancespeciesshapingsusceptibilitydirectcomparisonidenticalexperimentalconditionsacrossmultiplerequiredconfirmtaxon-specificinfluencesassemblytransmissiondependtargetedselectedepitopesresearchprovidesinsightsneedstrategicenhanceefficacycontrollingdiseasesEffectsPeptide-BasedAntimicrobiotaVaccinesFitnessAcquisitionTick-BornePathogensIxodesricinusdiseasecontrol

Similar Articles

Cited By

No available data.