Beyond the pill: incrimination of nuclear factor-kappa B and their targeted phytomedicine for pulmonary fibrosis.

Akarsha Balnadupete, Fathimath Muneesa Moideen, Aleena Varughese, Kirana Mugaranja, Jeena T M, Rakshitha Charavu, Yashodhar Bhandary
Author Information
  1. Akarsha Balnadupete: Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India.
  2. Fathimath Muneesa Moideen: Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India.
  3. Aleena Varughese: Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India.
  4. Kirana Mugaranja: Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India.
  5. Jeena T M: Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India.
  6. Rakshitha Charavu: Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India.
  7. Yashodhar Bhandary: Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, Karnataka, India. yashbhandary@yenepoya.edu.in.

Abstract

Pulmonary fibrosis (PF) is a slow and irreparable damage of the lung caused by the accumulation of scar tissue, which eventually results in organ dysfunction and fatality from gas exchange failure. One of the extensively studied inflammatory pathways in PF is the NF-��B signalling pathway, which is reportedly involved in epithelial-mesenchymal transition, myofibroblast differentiation, and other cellular processes. Additionally, studies have evidence that NF-��B signalling pathways can be employed as a potential target for developing therapeutic agents against PF. In the current scenario, FDA-approved drugs, nintedanib and pirfenidone, have been used for the treatment of PF with potential side effects. Recently, the usage of bioactive compounds has attracted attention in the treatment of PF. This review focuses on the involvement of the NF-��B signalling pathway in PF and the significance of phytocompounds in regulating the NF-��B pathway. Both the in vitro and in vivo studies reveal that NF-��B-targeted plant-based bioactive compounds significantly ameliorate the PF condition as well as improve the health condition. Databases such as Scopus, PubMed, and Web of Science were used to conduct literature surveys and compile data on all the bioactive compounds. In conclusion, the plant-derived bioactive compounds are potent enough to target the NF-��B with its biological properties, and this could be a highly effective therapeutic strategy for PF in the future.

Keywords

References

  1. Ahmad B, Rehman MU, Amin I et al (2015) A review on pharmacological properties of zingerone (4-(4-hydroxy-3-methoxyphenyl)-2-butanone). Sci World J 2015:816364. https://doi.org/10.1155/2015/816364 [DOI: 10.1155/2015/816364]
  2. Ahmed S, Mansour M, Ishak RAH, Mortada ND (2023) Customizable resveratrol spray-dried micro-composites for inhalation as a promising contender for treatment of idiopathic pulmonary fibrosis. Int J Pharm 642:123117. https://doi.org/10.1016/j.ijpharm.2023.123117 [DOI: 10.1016/j.ijpharm.2023.123117]
  3. Alamgeer YW, c H, et al (2018) Traditional medicinal plants used for respiratory disorders in Pakistan: a review of the ethno-medicinal and pharmacological evidence. Chin Med 13:48. https://doi.org/10.1186/s13020-018-0204-y [DOI: 10.1186/s13020-018-0204-y]
  4. Al-Gabri NA, Qaid MM, El-shaer NH et al (2019) Thymoquinone ameliorates pulmonary vascular damage induced byEscherichia coli���derived lipopolysaccharide via cytokine downregulation in rats. Environ Sci Pollut Res 26:18465���18469. https://doi.org/10.1007/s11356-019-05229-4 [DOI: 10.1007/s11356-019-05229-4]
  5. Alharbi KS, Fuloria NK, Fuloria S et al (2021) Nuclear factor-kappa B and its role in inflammatory lung disease. Chem Biol Interact 345:109568. https://doi.org/10.1016/j.cbi.2021.109568 [DOI: 10.1016/j.cbi.2021.109568]
  6. Alzohairy MA, Khan AA, Ansari MA et al (2021) Protective effect of quercetin, a flavonol against benzo(a)pyrene-induced lung injury via inflammation, oxidative stress, angiogenesis and cyclooxygenase-2 signalling molecule. Appl Sci 11:8675. https://doi.org/10.3390/app11188675 [DOI: 10.3390/app11188675]
  7. Andrews CS, Matsuyama S, Lee B-C, Li J-D (2016) Resveratrol suppresses NTHi-induced inflammation via up-regulation of the negative regulator MyD88 short. Sci Rep 6:1���13. https://doi.org/10.1038/srep34445 [DOI: 10.1038/srep34445]
  8. Ardain A, Marakalala MJ, Leslie A (2020) Tissue-resident innate immunity in the lung. Immunology 159:245���256. https://doi.org/10.1111/imm.13143 [DOI: 10.1111/imm.13143]
  9. Arlt VM, Stiborov�� M, Henderson CJ et al (2008) Metabolic activation of benzo[a ]pyrene in vitro by hepatic cytochrome P450 contrasts with detoxification in vivo���: experiments with hepatic cytochrome P450 reductase null mice. Carcinogenesis 29:656���665. https://doi.org/10.1093/carcin/bgn002 [DOI: 10.1093/carcin/bgn002]
  10. Avasarala S, Zhang F, Liu G et al (2013) Curcumin modulates the inflammatory response and inhibits subsequent fibrosis in a mouse model of viral-induced acute respiratory distress syndrome. PLoS ONE 8:e57285. https://doi.org/10.1371/journal.pone.0057285 [DOI: 10.1371/journal.pone.0057285]
  11. Bahabadi M, Mohammadalipour A, Karimi J et al (2017) Hepatoprotective effect of parthenolide in rat model of nonalcoholic fatty liver disease. Immunopharmacol Immunotoxicol 39:233���242. https://doi.org/10.1080/08923973.2017.1327965 [DOI: 10.1080/08923973.2017.1327965]
  12. Bahri S, Ali RB, Abdennabi R et al (2021) Industrial elimination of essential oils from Rosmarinus officinalis: in support of the synergic antifibrotic effect of rosmarinic and carnosic acids in bleomycin model of lung fibrosis. Nutr Cancer 73:2376���2387. https://doi.org/10.1080/01635581.2020.1826991 [DOI: 10.1080/01635581.2020.1826991]
  13. Bai Y, Li J, Zhao P et al (2018) A Chinese herbal formula ameliorates pulmonary fibrosis by inhibiting oxidative stress via upregulating Nrf2. Front Pharmacol 9:628. https://doi.org/10.3389/fphar.2018.00628 [DOI: 10.3389/fphar.2018.00628]
  14. Baird WM, Hooven LA, Mahadevan B (2005) Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ Mol Mutagen 45:106���114. https://doi.org/10.1002/em.20095 [DOI: 10.1002/em.20095]
  15. Balestro E, Cocconcelli E, Tin�� M et al (2019) Idiopathic pulmonary fibrosis and lung transplantation: when it is feasible. Medicina (Mex) 55:702. https://doi.org/10.3390/medicina55100702 [DOI: 10.3390/medicina55100702]
  16. Batra S, Balamayooran G, Sahoo MK (2011) Nuclear factor-��B: a key regulator in health and disease of lungs. Arch Immunol Ther Exp (Warsz) 59:335. https://doi.org/10.1007/s00005-011-0136-z [DOI: 10.1007/s00005-011-0136-z]
  17. Beyar R (2011) Challenges in organ transplantation. Rambam Maimonides Med J 2:e0049. https://doi.org/10.5041/RMMJ.10049 [DOI: 10.5041/RMMJ.10049]
  18. Braga PC, Dal Sasso M, Culici M et al (2006) Anti-inflammatory activity of thymol: inhibitory effect on the release of human neutrophil elastase. Pharmacology 77:130���136. https://doi.org/10.1159/000093790 [DOI: 10.1159/000093790]
  19. Budden KF, Gellatly SL, Wood DLA et al (2017) Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol 15:55���63. https://doi.org/10.1038/nrmicro.2016.142 [DOI: 10.1038/nrmicro.2016.142]
  20. Bukowska B, Mokra K, Micha��owicz J (2022) Benzo[a]pyrene���environmental occurrence, human exposure, and mechanisms of toxicity. Int J Mol Sci 23:6348. https://doi.org/10.3390/ijms23116348 [DOI: 10.3390/ijms23116348]
  21. Chang Y-C, Tsai M-H, Sheu WH-H et al (2013) The therapeutic potential and mechanisms of action of quercetin in relation to lipopolysaccharide-induced sepsis in vitro and in vivo. PLoS ONE 8. https://doi.org/10.1371/journal.pone.0080744
  22. Chen X, Yang X, Liu T et al (2012) Kaempferol regulates MAPKs and NF-��B signaling pathways to attenuate LPS-induced acute lung injury in mice. Int Immunopharmacol 14:209���216. https://doi.org/10.1016/j.intimp.2012.07.007 [DOI: 10.1016/j.intimp.2012.07.007]
  23. Chen X, Cai X, Le R et al (2018) Isoliquiritigenin protects against sepsis-induced lung and liver injury by reducing inflammatory responses. Biochem Biophys Res Commun 496:245���252. https://doi.org/10.1016/j.bbrc.2017.11.159 [DOI: 10.1016/j.bbrc.2017.11.159]
  24. Chen Y-C, Chuang T-Y, Liu C-W et al (2020) Particulate matters increase epithelial-mesenchymal transition and lung fibrosis through the ETS-1/NF-��B-dependent pathway in lung epithelial cells. Part Fibre Toxicol 17:41. https://doi.org/10.1186/s12989-020-00373-z [DOI: 10.1186/s12989-020-00373-z]
  25. Chen M, Li J, Liu X et al (2021) Chrysin prevents lipopolysaccharide-induced acute lung injury in mice by suppressing the IRE1��/TXNIP/NLRP3 pathway. Pulm Pharmacol Ther 68:102018. https://doi.org/10.1016/j.pupt.2021.102018 [DOI: 10.1016/j.pupt.2021.102018]
  26. Chen L, Ma Q, Zhang G et al (2022a) Protective effect and mechanism of loganin and morroniside on acute lung injury and pulmonary fibrosis. Phytomedicine Int J Phytother Phytopharm 99:154030. https://doi.org/10.1016/j.phymed.2022.154030 [DOI: 10.1016/j.phymed.2022.154030]
  27. Chen Z, Zhang Z, Liu J et al (2022b) Gut microbiota: therapeutic targets of ginseng against multiple disorders and ginsenoside transformation. Front Cell Infect Microbiol 12. https://doi.org/10.3389/fcimb.2022.853981
  28. Chen Q, Yang Z, Liu H et al (2024) Novel drug delivery systems: an important direction for drug innovation research and development. Pharmaceutics 16:674. https://doi.org/10.3390/pharmaceutics16050674 [DOI: 10.3390/pharmaceutics16050674]
  29. Cheng Z, Li L (2016) Ginsenoside Rg3 ameliorates lipopolysaccharide-induced acute lung injury in mice through inactivating the nuclear factor-��B (NF-��B) signaling pathway. Int Immunopharmacol 34:53���59. https://doi.org/10.1016/j.intimp.2016.02.011 [DOI: 10.1016/j.intimp.2016.02.011]
  30. Chennakesavulu S, Mishra A, Sudheer A et al (2018) Pulmonary delivery of liposomal dry powder inhaler formulation for effective treatment of idiopathic pulmonary fibrosis. Asian J Pharm Sci 13:91���100. https://doi.org/10.1016/j.ajps.2017.08.005 [DOI: 10.1016/j.ajps.2017.08.005]
  31. Chihomvu P, Ganesan A, Gibbons S et al (2024) Phytochemicals in drug discovery���a confluence of tradition and innovation. Int J Mol Sci 25:8792. https://doi.org/10.3390/ijms25168792 [DOI: 10.3390/ijms25168792]
  32. Chledzik S, Strawa J, Matuszek K, Nazaruk J (2018) Pharmacological effects of scutellarin, an active component of genus Scutellaria and Erigeron: a systematic review. Am J Chin Med 46:319���337. https://doi.org/10.1142/S0192415X18500167 [DOI: 10.1142/S0192415X18500167]
  33. Choi YH (2023) Activation of Nrf2/HO-1 antioxidant signaling correlates with the preventive effect of loganin on oxidative injury in ARPE-19 human retinal pigment epithelial cells. Genes Genomics 45:271���284. https://doi.org/10.1007/s13258-022-01302-4 [DOI: 10.1007/s13258-022-01302-4]
  34. Choi EJ, Chee K-M, Lee BH (2003) Anti-and prooxidant effects of chronic quercetin administration in rats. Eur J Pharmacol 482:281���285. https://doi.org/10.1016/j.ejphar.2003.09.067 [DOI: 10.1016/j.ejphar.2003.09.067]
  35. Chow MS, Liu LV, Solomon EI (2008) Further insights into the mechanism of the reaction of activated bleomycin with DNA. Proc Natl Acad Sci 105:13241���13245. https://doi.org/10.1073/pnas.0806378105 [DOI: 10.1073/pnas.0806378105]
  36. Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta BBA-Gen Subj 1830:3670���3695. https://doi.org/10.1016/j.bbagen.2013.02.008 [DOI: 10.1016/j.bbagen.2013.02.008]
  37. Cui Y, Wang Y, Zhao D et al (2018) Loganin prevents BV-2 microglia cells from A��1-42 -induced inflammation via regulating TLR4/TRAF6/NF-��B axis. Cell Biol Int 42:1632���1642. https://doi.org/10.1002/cbin.11060 [DOI: 10.1002/cbin.11060]
  38. Cui Y, Xin H, Tao Y et al (2021) Arenaria kansuensis attenuates pulmonary fibrosis in mice via the activation of Nrf2 pathway and the inhibition of NF-kB / TGF -beta1/Smad2/3 pathway. Phytother Res 35:974���986. https://doi.org/10.1002/ptr.6857 [DOI: 10.1002/ptr.6857]
  39. Della Latta V, Cecchettini A, Del Ry S, Morales MA (2015) Bleomycin in the setting of lung fibrosis induction: from biological mechanisms to counteractions. Pharmacol Res 97:122���130. https://doi.org/10.1016/j.phrs.2015.04.012 [DOI: 10.1016/j.phrs.2015.04.012]
  40. Di Paola R, Impellizzeri D, Fusco R et al (2016) Ultramicronized palmitoylethanolamide (PEA-um(��)) in the treatment of idiopathic pulmonary fibrosis. Pharmacol Res 111:405���412. https://doi.org/10.1016/j.phrs.2016.07.010 [DOI: 10.1016/j.phrs.2016.07.010]
  41. Domingo-Fern��ndez D, Gadiya Y, Mubeen S et al (2023) Modern drug discovery using ethnobotany: a large-scale cross-cultural analysis of traditional medicine reveals common therapeutic uses. iScience 26:107729. https://doi.org/10.1016/j.isci.2023.107729
  42. Dua K, Malyla V, Singhvi G et al (2019) Increasing complexity and interactions of oxidative stress in chronic respiratory diseases: an emerging need for novel drug delivery systems. Chem Biol Interact 299:168���178. https://doi.org/10.1016/j.cbi.2018.12.009 [DOI: 10.1016/j.cbi.2018.12.009]
  43. El-Khouly D, El-Bakly WM, Awad AS et al (2012) Thymoquinone blocks lung injury and fibrosis by attenuating bleomycin-induced oxidative stress and activation of nuclear factor kappa-B in rats. Toxicology 302:106���113. https://doi.org/10.1016/j.tox.2012.09.001 [DOI: 10.1016/j.tox.2012.09.001]
  44. Fakhri S, Moradi SZ, Yarmohammadi A et al (2022) Modulation of TLR/NF-��B/NLRP signaling by bioactive phytocompounds: a promising strategy to augment cancer chemotherapy and immunotherapy. Front Oncol 12:834072. https://doi.org/10.3389/fonc.2022.834072 [DOI: 10.3389/fonc.2022.834072]
  45. Fitzgerald KA, Rowe DC, Golenbock DT (2004) Endotoxin recognition and signal transduction by the TLR4/MD2-complex. Microbes Infect 6:1361���1367. https://doi.org/10.1016/j.micinf.2004.08.015 [DOI: 10.1016/j.micinf.2004.08.015]
  46. Flaherty KR, Fell CD, Huggins JT et al (2018) Safety of nintedanib added to pirfenidone treatment for idiopathic pulmonary fibrosis. Eur Respir J 52:1800230. https://doi.org/10.1183/13993003.00230-2018 [DOI: 10.1183/13993003.00230-2018]
  47. Fridlender M, Kapulnik Y, Koltai H (2015) Plant derived substances with anti-cancer activity: from folklore to practice. Front Plant Sci 6:799. https://doi.org/10.3389/fpls.2015.00799 [DOI: 10.3389/fpls.2015.00799]
  48. Gao Y, Lv X, Yang H et al (2020) Isoliquiritigenin exerts antioxidative and anti-inflammatory effects via activating the KEAP-1/Nrf2 pathway and inhibiting the NF-��B and NLRP3 pathways in carrageenan-induced pleurisy. Food Funct 11:2522���2534. https://doi.org/10.1039/C9FO01984G [DOI: 10.1039/C9FO01984G]
  49. Ghantous A, Sinjab A, Herceg Z, Darwiche N (2013) Parthenolide: from plant shoots to cancer roots. Drug Discov Today 18:894���905. https://doi.org/10.1016/j.drudis.2013.05.005 [DOI: 10.1016/j.drudis.2013.05.005]
  50. Ghumman M, Dhamecha D, Gonsalves A et al (2021) Emerging drug delivery strategies for idiopathic pulmonary fibrosis treatment. Eur J Pharm Biopharm off J Arbeitsgemeinschaft Pharm Verfahrenstechnik EV 164:1���12. https://doi.org/10.1016/j.ejpb.2021.03.017 [DOI: 10.1016/j.ejpb.2021.03.017]
  51. Han J, Luo L, Wang Y et al (2022a) Therapeutic potential and molecular mechanisms of salidroside in ischemic diseases. Front Pharmacol 13:974775. https://doi.org/10.3389/fphar.2022.974775 [DOI: 10.3389/fphar.2022.974775]
  52. Han HS, Koo SY, Choi KY (2022b) Emerging nanoformulation strategies for phytocompounds and applications from drug delivery to phototherapy to imaging. Bioact Mater 14:182���205. https://doi.org/10.1016/j.bioactmat.2021.11.027 [DOI: 10.1016/j.bioactmat.2021.11.027]
  53. Hasan M, Paul NC, Paul SK et al (2022) Natural product-based potential therapeutic interventions of pulmonary fibrosis. Mol Basel Switz 27:1481. https://doi.org/10.3390/molecules27051481 [DOI: 10.3390/molecules27051481]
  54. Heeba GH, Mahmoud ME (2014) Therapeutic potential of morin against liver fibrosis in rats: modulation of oxidative stress, cytokine production and nuclear factor kappa B. Environ Toxicol Pharmacol 37:662���671. https://doi.org/10.1016/j.etap.2014.01.026 [DOI: 10.1016/j.etap.2014.01.026]
  55. Hou C, Li W, Li Z et al (2017) Synthetic isoliquiritigenin inhibits human tongue squamous carcinoma cells through its antioxidant mechanism. Oxid Med Cell Longev 2017:e1379430. https://doi.org/10.1155/2017/1379430 [DOI: 10.1155/2017/1379430]
  56. Hou M, Wang R, Zhao S, Wang Z (2021) Ginsenosides in Panax genus and their biosynthesis. Acta Pharm Sin B 11:1813���1834. https://doi.org/10.1016/j.apsb.2020.12.017 [DOI: 10.1016/j.apsb.2020.12.017]
  57. Hsiang C-Y, Lo H-Y, Huang H-C et al (2013) Ginger extract and zingerone ameliorated trinitrobenzene sulphonic acid-induced colitis in mice via modulation of nuclear factor-��B activity and interleukin-1�� signalling pathway. Food Chem 136:170���177. https://doi.org/10.1016/j.foodchem.2012.07.124 [DOI: 10.1016/j.foodchem.2012.07.124]
  58. Hsieh Y-H, Deng J-S, Chang Y-S, Huang G-J (2018) Ginsenoside Rh2 ameliorates lipopolysaccharide-induced acute lung injury by regulating the TLR4/PI3K/Akt/mTOR, Raf-1/MEK/ERK, and Keap1/Nrf2/HO-1 signaling pathways in mice. Nutrients 10:1208. https://doi.org/10.3390/nu10091208 [DOI: 10.3390/nu10091208]
  59. Hu Y, Li M, Zhang M, Jin Y (2018) Inhalation treatment of idiopathic pulmonary fibrosis with curcumin large porous microparticles. Int J Pharm 551:212���222. https://doi.org/10.1016/j.ijpharm.2018.09.031 [DOI: 10.1016/j.ijpharm.2018.09.031]
  60. Huber MA, Azoitei N, Baumann B et al (2004) NF-��B is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 114:569���581. https://doi.org/10.1172/JCI200421358 [DOI: 10.1172/JCI200421358]
  61. Hussein RM, Arafa E-SA, Raheem SA, Mohamed WR (2023) Thymol protects against bleomycin-induced pulmonary fibrosis via abrogation of oxidative stress, inflammation, and modulation of miR-29a/TGF-�� and PI3K/Akt signaling in mice. Life Sci 314:121256. https://doi.org/10.1016/j.lfs.2022.121256 [DOI: 10.1016/j.lfs.2022.121256]
  62. Hyam SR, Jang S-E, Jeong J-J et al (2013) Echinocystic acid, a metabolite of lancemaside A, inhibits TNBS-induced colitis in mice. Int Immunopharmacol 15:433���441. https://doi.org/10.1016/j.intimp.2012.12.017 [DOI: 10.1016/j.intimp.2012.12.017]
  63. Hyun SH, Bhilare KD, In G et al (2022) Effects of Panax ginseng and ginsenosides on oxidative stress and cardiovascular diseases: pharmacological and therapeutic roles. J Ginseng Res 46:33���38. https://doi.org/10.1016/j.jgr.2021.07.007 [DOI: 10.1016/j.jgr.2021.07.007]
  64. Islam MT, Khalipha ABR, Bagchi R et al (2019) Anticancer activity of thymol: a literature-based review and docking study with Emphasis on its anticancer mechanisms. IUBMB Life 71:9���19. https://doi.org/10.1002/iub.1935 [DOI: 10.1002/iub.1935]
  65. James A, Mannon RB (2015) The cost of transplant immunosuppressant therapy: is this sustainable? Curr Transplant Rep 2:113���121. https://doi.org/10.1007/s40472-015-0052-y [DOI: 10.1007/s40472-015-0052-y]
  66. Jia R, Li Y, Cao L et al (2019) Antioxidative, anti-inflammatory and hepatoprotective effects of resveratrol on oxidative stress-induced liver damage in tilapia (Oreochromis niloticus). Comp Biochem Physiol Part - C Toxicol Pharmacol 215:56���66. https://doi.org/10.1016/j.cbpc.2018.10.002 [DOI: 10.1016/j.cbpc.2018.10.002]
  67. Jiang L, Wang Y, Yin Q et al (2017) Phycocyanin: a potential drug for cancer treatment. J Cancer 8:3416���3429. https://doi.org/10.7150/jca.21058 [DOI: 10.7150/jca.21058]
  68. Jiang F, Li M, Wang H et al (2019) Coelonin, an anti-inflammation active component of Bletilla striata and its potential mechanism. Int J Mol Sci 20:4422. https://doi.org/10.3390/ijms20184422 [DOI: 10.3390/ijms20184422]
  69. Jiang L, Li Y, Yu J et al (2021) A dry powder inhalable formulation of salvianolic acids for the treatment of pulmonary fibrosis: safety, lung deposition, and pharmacokinetic study. Drug Deliv Transl Res 11:1958���1968. https://doi.org/10.1007/s13346-020-00857-7 [DOI: 10.1007/s13346-020-00857-7]
  70. Jin F, Li C (2017) Seawater-drowning-induced acute lung injury: from molecular mechanisms to potential treatments. Exp Ther Med 13:2591���2598. https://doi.org/10.3892/etm.2017.4302 [DOI: 10.3892/etm.2017.4302]
  71. Joh E-H, Gu W, Kim D-H (2012) Echinocystic acid ameliorates lung inflammation in mice and alveolar macrophages by inhibiting the binding of LPS to TLR4 in NF-��B and MAPK pathways. Biochem Pharmacol 84:331���340. https://doi.org/10.1016/j.bcp.2012.04.020 [DOI: 10.1016/j.bcp.2012.04.020]
  72. Kazemipoor M, Wan Mohamed Radzi CWJ, Cordell GA, Yaze I (2012) Safety, efficacy and metabolism of traditional medicinal plants in the management of obesity: a review. Int J Chem Eng Appl 3:288���292. https://doi.org/10.7763/IJCEA.2012.V3.201 [DOI: 10.7763/IJCEA.2012.V3.201]
  73. Khanmohammadi S, Rezaei N (2021) Role of Toll-like receptors in the pathogenesis of COVID-19. J Med Virol 93:2735���2739. https://doi.org/10.1002/jmv.26826 [DOI: 10.1002/jmv.26826]
  74. Kim JM, Lee EK, Kim DH et al (2010a) Kaempferol modulates pro-inflammatory NF-��B activation by suppressing advanced glycation endproducts-induced NADPH oxidase. Age 32:197���208 [PMID: 20431987]
  75. Kim MK, Chung SW, Kim DH et al (2010b) Modulation of age-related NF-kappaB activation by dietary zingerone via MAPK pathway. Exp Gerontol 45:419���426. https://doi.org/10.1016/j.exger.2010.03.005 [DOI: 10.1016/j.exger.2010.03.005]
  76. Kim TY, Jeon S, Ko M et al (2022) Lancemaside A from Codonopsis lanceolata: studies on antiviral activity and mechanism of action against SARS-CoV-2 and its variants of concern. Antimicrob Agents Chemother. https://doi.org/10.1128/aac.01201-22 [DOI: 10.1128/aac.01201-22]
  77. Kotta S, Aldawsari HM, Badr-Eldin SM et al (2021) Aerosol delivery of surfactant liposomes for management of pulmonary fibrosis: an approach supporting pulmonary mechanics. Pharmaceutics 13:1851. https://doi.org/10.3390/pharmaceutics13111851 [DOI: 10.3390/pharmaceutics13111851]
  78. Kseibati MO, Sharawy MH, Salem HA (2020) Chrysin mitigates bleomycin-induced pulmonary fibrosis in rats through regulating inflammation, oxidative stress, and hypoxia. Int Immunopharmacol 89:107011. https://doi.org/10.1016/j.intimp.2020.107011 [DOI: 10.1016/j.intimp.2020.107011]
  79. Kumar L, Chhibber S, Harjai K (2013) Zingerone inhibit biofilm formation and improve antibiofilm efficacy of ciprofloxacin against Pseudomonas aeruginosa PAO1. Fitoterapia 90:73���78. https://doi.org/10.1016/j.fitote.2013.06.017 [DOI: 10.1016/j.fitote.2013.06.017]
  80. Kumar S, Kumar D, Bhat A, Kumar A (2018) Phytochemicals in clinical studies: current perspective. In: Rani V, Yadav UCS (eds) Functional food and human health. Springer Singapore, pp 471���511. https://doi.org/10.1007/978-981-13-1123-9_21
  81. Laporta Hernandez R, Aguilar Perez M, L��zaro Carrasco MT, Ussetti Gil P (2018) Lung transplantation in idiopathic pulmonary fibrosis. Med Sci 6:68. https://doi.org/10.3390/medsci6030068 [DOI: 10.3390/medsci6030068]
  82. Lawrence T (2009) The nuclear factor NF-��B pathway in inflammation. Cold Spring Harb Perspect Biol 1:a001651. https://doi.org/10.1101/cshperspect.a001651 [DOI: 10.1101/cshperspect.a001651]
  83. Le T-TT, Karmouty-Quintana H, Melicoff E et al (2014) Blockade of IL-6 trans signaling attenuates pulmonary fibrosis. J Immunol Author Choice 193:3755���3768. https://doi.org/10.4049/jimmunol.1302470 [DOI: 10.4049/jimmunol.1302470]
  84. Lee K-T, Choi J, Jung W-T et al (2002) Structure of a new echinocystic acid bisdesmoside isolated from Codonopsis lanceolata roots and the cytotoxic activity of prosapogenins. J Agric Food Chem 50:4190���4193. https://doi.org/10.1021/jf011647l [DOI: 10.1021/jf011647l]
  85. Lei Y, Wang K, Li X et al (2019) Cell-surface translocation of annexin A2 contributes to bleomycin-induced pulmonary fibrosis by mediating inflammatory response in mice. Clin Sci Lond Engl 133:789-804. https://doi.org/10.1042/CS20180687
  86. Leung P-O, Lee H-H, Kung Y-C et al (2013) Therapeutic effect of C-phycocyanin extracted from blue green algae in a rat model of acute lung injury induced by lipopolysaccharide. Evid-Based Complement Altern Med ECAM 2013:916590. https://doi.org/10.1155/2013/916590 [DOI: 10.1155/2013/916590]
  87. Li L, Wei C, Kim I-K et al (2014) Inhibition of nuclear factor-��B in the lungs prevents monocrotaline-induced pulmonary hypertension in mice. Hypertension 63:1260���1269. https://doi.org/10.1161/hypertensionaha.114.03220 [DOI: 10.1161/hypertensionaha.114.03220]
  88. Li Y-J, Han Z, Ge L, et al (2016) C-phycocyanin protects against low fertility by inhibiting reactive oxygen species in aging mice. Oncotarget 7:17393���17409. https://doi.org/10.18632/oncotarget.8165
  89. Li C, Yu Y, Li W et al (2017) Phycocyanin attenuates pulmonary fibrosis via the TLR2-MyD88-NF-��B signaling pathway. Sci Rep 7:5843. https://doi.org/10.1038/s41598-017-06021-5 [DOI: 10.1038/s41598-017-06021-5]
  90. Li X, Xiao T, Yang J et al (2018) Parthenolide attenuated bleomycin-induced pulmonary fibrosis via the NF-��B/Snail signaling pathway. Respir Res 19:1���12. https://doi.org/10.1186/s12931-018-0806-z [DOI: 10.1186/s12931-018-0806-z]
  91. Li W, Lu L, Liu B, Qin S (2020a) Effects of phycocyanin on pulmonary and gut microbiota in a radiation-induced pulmonary fibrosis model. Biomed Pharmacother 132:110826. https://doi.org/10.1016/j.biopha.2020.110826 [DOI: 10.1016/j.biopha.2020.110826]
  92. Li X, Mo N, Li Z (2020b) Ginsenosides: potential therapeutic source for fibrosis-associated human diseases. J Ginseng Res 44:386���398. https://doi.org/10.1016/j.jgr.2019.12.003 [DOI: 10.1016/j.jgr.2019.12.003]
  93. Li S, Shi J, Tang H (2022) Animal models of drug-induced pulmonary fibrosis: an overview of molecular mechanisms and characteristics. Cell Biol Toxicol 38:699���723. https://doi.org/10.1007/s10565-021-09676-z [DOI: 10.1007/s10565-021-09676-z]
  94. Lin Y, Bai L, Chen W, Xu S (2010) The NF-��B activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opin Ther Targets 14:45���55. https://doi.org/10.1517/14728220903431069 [DOI: 10.1517/14728220903431069]
  95. Lingappan K (2018) NF-��B in oxidative stress. Curr Opin Toxicol 7:81���86. https://doi.org/10.1016/j.cotox.2017.11.002 [DOI: 10.1016/j.cotox.2017.11.002]
  96. Liu L, Li X-O, Wang T et al (2014a) Chrysin reduces the degree of lung injure which induced by lipopolysaccharides (LPS): possible involvement of oxidative stress and the NF-��B pathway. Eur Respir J 44. http://erj.ersjournals.com/content/erj/44/Suppl_58/P3938.abstract
  97. Liu W, Dong M, Bo L et al (2014b) Epigallocatechin-3-gallate ameliorates seawater aspiration-induced acute lung injury via regulating inflammatory cytokines and inhibiting JAK/STAT1 pathway in rats. Mediators Inflamm 2014:612593. https://doi.org/10.1155/2014/612593 [DOI: 10.1155/2014/612593]
  98. Liu P-L, Chong I-W, Lee Y-C et al (2015) Anti-inflammatory effects of resveratrol on hypoxia/reoxygenation-induced alveolar epithelial cell dysfunction. J Agric Food Chem 63:9480���9487. https://doi.org/10.1021/acs.jafc.5b01168 [DOI: 10.1021/acs.jafc.5b01168]
  99. Liu Q, Lv H, Wen Z et al (2017a) Isoliquiritigenin activates nuclear factor erythroid-2 related factor 2 to suppress the NOD-like receptor protein 3 inflammasome and inhibits the NF-��B pathway in macrophages and in acute lung injury. Front Immunol 8. https://doi.org/10.3389/fimmu.2017.01518
  100. Liu T, Zhang L, Joo D, Sun SC (2017b) NF-��B signaling in inflammation. Signal Transduct Target Ther 21(2):1���9. https://doi.org/10.1038/sigtrans.2017.23 [DOI: 10.1038/sigtrans.2017.23]
  101. Liu L, Sun Q, Davis F et al (2022) Epithelial���mesenchymal transition in organ fibrosis development: current understanding and treatment strategies. Burns. Trauma 10:tkac011. https://doi.org/10.1093/burnst/tkac011 [DOI: 10.1093/burnst/tkac011]
  102. Lu Y-C, Yeh W-C, Ohashi PS (2008) LPS/TLR4 signal transduction pathway. Cytokine 42:145���151. https://doi.org/10.1016/j.cyto.2008.01.006 [DOI: 10.1016/j.cyto.2008.01.006]
  103. Lu R, Wu Y, Guo H, Huang X (2016) Salidroside protects lipopolysaccharide-induced acute lung injury in mice. Dose-Response 14:1559325816678492. https://doi.org/10.1177/1559325816678492 [DOI: 10.1177/1559325816678492]
  104. Lu L-M, Fu Y, Li Q-Y et al (2021) Chrysin inhibited epithelial-mesenchymal transition of type II alveolar epithelial cell by regulating NF-��B/Twist 1 signaling pathway. China J Chin Mater Medica 46:146���154. https://doi.org/10.19540/j.cnki.cjcmm.20200810.402
  105. Lu P, Li J, Liu C et al (2022a) Salvianolic acid B dry powder inhaler for the treatment of idiopathic pulmonary fibrosis. Asian J Pharm Sci 17:447���461. https://doi.org/10.1016/j.ajps.2022.04.004 [DOI: 10.1016/j.ajps.2022.04.004]
  106. Lu Y, Zhang Y, Xu D et al (2022b) Tocotrienol-rich fractions offer potential to suppress pulmonary fibrosis progression. Int J Mol Sci 23:14331. https://doi.org/10.3390/ijms232214331 [DOI: 10.3390/ijms232214331]
  107. Luo Z, Hu Z, Bian Y et al (2020) Scutellarin attenuates the IL-1��-induced inflammation in mouse chondrocytes and prevents osteoarthritic progression. Front Pharmacol 11:107. https://doi.org/10.3389/fphar.2020.00107 [DOI: 10.3389/fphar.2020.00107]
  108. Lv S, Fu Y, Chen J et al (2022) Six phenanthrenes from the roots of Cymbidium faberi Rolfe. and their biological activities. Nat Prod Res 36:1170���1181. https://doi.org/10.1080/14786419.2020.1862836 [DOI: 10.1080/14786419.2020.1862836]
  109. Lynch JP, Belperio JA (2011) Idiopathic pulmonary fibrosis. Diffuse Lung Dis 171���194:171. https://doi.org/10.1007/978-1-4419-9771-5_10 [DOI: 10.1007/978-1-4419-9771-5_10]
  110. Ma L, Zhao Y, Li B et al (2013) 3,5,4���-Tri-O-acetylresveratrol attenuates seawater aspiration-induced lung injury by inhibiting activation of nuclear factor-kappa B and hypoxia-inducible factor-1��. Respir Physiol Neurobiol 185:608���614. https://doi.org/10.1016/j.resp.2012.11.016 [DOI: 10.1016/j.resp.2012.11.016]
  111. Mao Q-Q, Xu X-Y, Cao S-Y et al (2019) Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods 8:185. https://doi.org/10.3390/foods8060185 [DOI: 10.3390/foods8060185]
  112. Mathews MS, Blickenstaff JW, Shih E-C et al (2012) Photochemical internalization of bleomycin for glioma treatment. J Biomed Opt 17:058001. https://doi.org/10.1117/1.JBO.17.5.058001 [DOI: 10.1117/1.JBO.17.5.058001]
  113. Mehrzadi S, Hosseini P, Mehrabani M et al (2021) Attenuation of bleomycin-induced pulmonary fibrosis in wistar rats by combination treatment of two natural phenolic compounds: quercetin and gallic acid. Nutr Cancer 73:2039���2049. https://doi.org/10.1080/01635581.2020.1820053 [DOI: 10.1080/01635581.2020.1820053]
  114. Meng T, Xiao D, Muhammed A et al (2021) Anti-inflammatory action and mechanisms of resveratrol. Molecules 26:229. https://doi.org/10.3390/molecules26010229 [DOI: 10.3390/molecules26010229]
  115. Millar MW, Fazal F, Rahman A (2022) Therapeutic targeting of NF-��B in acute lung injury: a double-edged sword. Cells 11:3317. https://doi.org/10.3390/cells11203317 [DOI: 10.3390/cells11203317]
  116. Mir LM, Rubinsky B (2002) Treatment of cancer with cryochemotherapy. Br J Cancer 86:1658���1660. https://doi.org/10.1038/sj.bjc.6600306 [DOI: 10.1038/sj.bjc.6600306]
  117. Mohanan P, Subramaniyam S, Mathiyalagan R, Yang D-C (2018) Molecular signaling of ginsenosides Rb1, Rg1, and Rg3 and their mode of actions. J Ginseng Res 42:123���132. https://doi.org/10.1016/j.jgr.2017.01.008 [DOI: 10.1016/j.jgr.2017.01.008]
  118. Muneesa MF, Barki RR, Shaikh SB, Bhandary YP (2022) Curcumin intervention during progressive fibrosis controls inflammatory cytokines and the fibrinolytic system in pulmonary fibrosis. Toxicol Appl Pharmacol 449:116116. https://doi.org/10.1016/j.taap.2022.116116 [DOI: 10.1016/j.taap.2022.116116]
  119. Murthy P, Shaibie NA, Lim CL et al (2022) An overview of herbal medicines for idiopathic pulmonary fibrosis. Processes 10:1131. https://doi.org/10.3390/pr10061131 [DOI: 10.3390/pr10061131]
  120. Muthu C, Ayyanar M, Raja N, Ignacimuthu S (2006) Medicinal plants used by traditional healers in Kancheepuram District of Tamil Nadu. India J Ethnobiol Ethnomedicine 2:43. https://doi.org/10.1186/1746-4269-2-43 [DOI: 10.1186/1746-4269-2-43]
  121. Nagoor Meeran MF, Javed H, Al Taee H et al (2017) Pharmacological properties and molecular mechanisms of thymol: prospects for its therapeutic potential and pharmaceutical development. Front Pharmacol 8:380. https://doi.org/10.3389/fphar.2017.00380 [DOI: 10.3389/fphar.2017.00380]
  122. Nishanthini A, Mohan VR (2012) Antioxidant activites of Xanthosoma sagittifolium Schott using various in vitro assay models. Asian Pac J Trop Biomed 2:S1701���S1706. https://doi.org/10.1016/S2221-1691(12)60481-X [DOI: 10.1016/S2221-1691(12)60481-X]
  123. Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:1���15. https://doi.org/10.1017/JNS.2016.41 [DOI: 10.1017/JNS.2016.41]
  124. Pareek A, Suthar M, Rathore GS, Bansal V (2011) Feverfew (Tanacetum parthenium L.): a systematic review. Pharmacogn Rev 5:103���110. https://doi.org/10.4103/0973-7847.79105 [DOI: 10.4103/0973-7847.79105]
  125. Park MJ, Lee EK, Heo H-S et al (2009) The anti-inflammatory effect of kaempferol in aged kidney tissues: the involvement of nuclear factor-�� B via nuclear factor-inducing kinase/I �� B kinase and mitogen-activated protein kinase pathways. J Med Food 12:351���358. https://doi.org/10.1089/jmf.2008.0006 [DOI: 10.1089/jmf.2008.0006]
  126. Park MY, Ha SE, Kim HH et al (2022) Scutellarein inhibits LPS-induced inflammation through NF-��B/MAPKs signaling pathway in RAW264.7 Cells. Molecules 27:3782. https://doi.org/10.3390/molecules27123782 [DOI: 10.3390/molecules27123782]
  127. Patil SM, Ramu R, Shirahatti PS et al (2021) A systematic review on ethnopharmacology, phytochemistry and pharmacological aspects of Thymus vulgaris Linn. Heliyon 7:e07054. https://doi.org/10.1016/j.heliyon.2021.e07054 [DOI: 10.1016/j.heliyon.2021.e07054]
  128. Pellati F, Benvenuti S (2007) Fast high-performance liquid chromatography analysis of phenethylamine alkaloids in citrus natural products on a pentafluorophenylpropyl stationary phase. J Chromatogr A 1165:58���66. https://doi.org/10.1016/j.chroma.2007.07.041 [DOI: 10.1016/j.chroma.2007.07.041]
  129. Peng L, Wen L, Shi Q-F et al (2020) Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-��B/NLRP3-mediated epithelial���mesenchymal transition and inflammation. Cell Death Dis 11:1���16. https://doi.org/10.1038/s41419-020-03178-2 [DOI: 10.1038/s41419-020-03178-2]
  130. Perera K, Ghumman M, Sorkhdini P et al (2025) Citrus pectin-coated inhalable PLGA nanoparticles for treatment of pulmonary fibrosis. J Mater Chem B. https://doi.org/10.1039/D4TB01682C [DOI: 10.1039/D4TB01682C]
  131. Peritore AF, D���Amico R, Siracusa R et al (2021) Management of acute lung injury: palmitoylethanolamide as a new approach. Int J Mol Sci 22:5533. https://doi.org/10.3390/ijms22115533 [DOI: 10.3390/ijms22115533]
  132. Pirmohamed M, James S, Meakin S et al (2004) Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ 329:15���19 [PMID: 15231615]
  133. Pottoo FH, Ibrahim AM, Alammar A et al (2022) Thymoquinone: review of its potential in the treatment of neurological diseases. Pharmaceuticals 15:408. https://doi.org/10.3390/ph15040408 [DOI: 10.3390/ph15040408]
  134. Prajapati R, Seong SH, Park SE et al (2021) Isoliquiritigenin, a potent human monoamine oxidase inhibitor, modulates dopamine D1, D3, and vasopressin V1A receptors. Sci Rep 11:23528. https://doi.org/10.1038/s41598-021-02843-6 [DOI: 10.1038/s41598-021-02843-6]
  135. Qattan MY, Khan MI, Alharbi SH et al (2022) Therapeutic importance of kaempferol in the treatment of cancer through the modulation of cell signalling pathways. Molecules 27:8864. https://doi.org/10.3390/molecules27248864 [DOI: 10.3390/molecules27248864]
  136. Qi B, Zhang L, Zhang Z et al (2014) Effects of ginsenosides-Rb1 on exercise-induced oxidative stress in forced swimming mice. Pharmacogn Mag 10:458���463. https://doi.org/10.4103/0973-1296.141818 [DOI: 10.4103/0973-1296.141818]
  137. Qi D, Jia B, Peng H et al (2023) Baicalin/ambroxol hydrochloride combined dry powder inhalation formulation targeting lung delivery for treatment of idiopathic pulmonary fibrosis: fabrication, characterization, pharmacokinetics, and pharmacodynamics. Eur J Pharm Biopharm 188:243���253. https://doi.org/10.1016/j.ejpb.2023.05.017 [DOI: 10.1016/j.ejpb.2023.05.017]
  138. Rajala K, Lehto JT, Saarinen M et al (2016) End-of-life care of patients with idiopathic pulmonary fibrosis. BMC Palliat Care 15:85. https://doi.org/10.1186/s12904-016-0158-8 [DOI: 10.1186/s12904-016-0158-8]
  139. Rajendran P, Ben Ammar R, Al-Saeedi FJ et al (2020) Thidiazuron decreases epithelial-mesenchymal transition activity through the NF-kB and PI3K/AKT signalling pathways in breast cancer. J Cell Mol Med 24:14525���14538. https://doi.org/10.1111/jcmm.16079 [DOI: 10.1111/jcmm.16079]
  140. Ranjit S, Sinha N, Kodidela S, Kumar S (2018) Benzo(a)pyrene in cigarette smoke enhances HIV-1 replication through NF-��B activation via CYP-mediated oxidative stress pathway. Sci Rep 8:10394. https://doi.org/10.1038/s41598-018-28500-z [DOI: 10.1038/s41598-018-28500-z]
  141. Roviezzo F, Rossi A, Caiazzo E et al (2017) Palmitoylethanolamide supplementation during sensitization prevents airway allergic symptoms in the mouse. Front Pharmacol 8:857. https://doi.org/10.3389/fphar.2017.00857 [DOI: 10.3389/fphar.2017.00857]
  142. Rui M, Duan Y-Y, Zhang X-H et al (2012) Urinary trypsin inhibitor attenuates seawater-induced acute lung injury by influencing the activities of nuclear factor-��B and its related inflammatory mediators. Respir Int Rev Thorac Dis 83:335���343. https://doi.org/10.1159/000333378 [DOI: 10.1159/000333378]
  143. Ruiz-Moreno C, Del Coso J, Gir��ldez-Costas V et al (2021) Effects of p-synephrine during exercise: a brief narrative review. Nutrients 13:233. https://doi.org/10.3390/nu13010233 [DOI: 10.3390/nu13010233]
  144. Saadane A, Masters S, DiDonato J et al (2007) Parthenolide inhibits I��B kinase, NF-��B activation, and inflammatory response in cystic fibrosis cells and mice. Am J Respir Cell Mol Biol 36:728���736. https://doi.org/10.1165/rcmb.2006-0323OC [DOI: 10.1165/rcmb.2006-0323OC]
  145. Salehi B, Mishra AP, Shukla I et al (2018) Thymol, thyme, and other plant sources: health and potential uses. Phytother Res PTR 32:1688���1706. https://doi.org/10.1002/ptr.6109 [DOI: 10.1002/ptr.6109]
  146. Saravanakumar K, Sivasantosh S, Sathiyaseelan A et al (1987) (2022) Impact of benzo[a]pyrene with other pollutants induce the molecular alternation in the biological system: Existence, detection, and remediation methods. Environ Pollut Barking Essex 304:119207. https://doi.org/10.1016/j.envpol.2022.119207 [DOI: 10.1016/j.envpol.2022.119207]
  147. Sathiyamoorthy G, Sehgal S, Ashton RW (2017) Pirfenidone and nintedanib for treatment of idiopathic pulmonary fibrosis. South Med J 110:393���398. https://doi.org/10.14423/SMJ.0000000000000655 [DOI: 10.14423/SMJ.0000000000000655]
  148. Sayed N, Khurana A, Godugu C (2019) Pharmaceutical perspective on the translational hurdles of phytoconstituents and strategies to overcome. J Drug Deliv Sci Technol 53:101201. https://doi.org/10.1016/j.jddst.2019.101201 [DOI: 10.1016/j.jddst.2019.101201]
  149. Shaukat A, Guo Y-F, Jiang K et al (2019) Ginsenoside Rb1 ameliorates Staphylococcus aureus-induced acute lung injury through attenuating NF-��B and MAPK activation. Microb Pathog 132:302���312. https://doi.org/10.1016/j.micpath.2019.05.003 [DOI: 10.1016/j.micpath.2019.05.003]
  150. Sheng-Ji P (2001) Ethnobotanical approaches of traditional medicine studies: some experiences from Asia. Pharm Biol 39:74���79. https://doi.org/10.1076/phbi.39.s1.74.0005 [DOI: 10.1076/phbi.39.s1.74.0005]
  151. Shin B-K, Kwon SW, Park JH (2015) Chemical diversity of ginseng saponins from Panax ginseng. J Ginseng Res 39:287���298. https://doi.org/10.1016/j.jgr.2014.12.005 [DOI: 10.1016/j.jgr.2014.12.005]
  152. Song Y, Wu Y, Li X et al (2018) Protostemonine attenuates alternatively activated macrophage and DRA-induced asthmatic inflammation. Biochem Pharmacol 155:198���206. https://doi.org/10.1016/j.bcp.2018.07.003 [DOI: 10.1016/j.bcp.2018.07.003]
  153. Stohs SJ (2013) Problems with Citrus aurantium information in ���a review on botanical species and chemical compounds with appetite suppressing properties for body weight control.��� Plant Foods Hum Nutr Dordr Neth 68:329���331. https://doi.org/10.1007/s11130-013-0376-7 [DOI: 10.1007/s11130-013-0376-7]
  154. Su W, Liang Y, Meng Z et al (2020) Inhalation of tetrandrine-hydroxypropyl-��-cyclodextrin inclusion complexes for pulmonary fibrosis treatment. Mol Pharm 17:1596���1607. https://doi.org/10.1021/acs.molpharmaceut.0c00026 [DOI: 10.1021/acs.molpharmaceut.0c00026]
  155. Suarez-Ramirez JE, Chandiran K, Brocke S, Cauley LS (2019) Immunity to respiratory infection is reinforced through early proliferation of lymphoid TRM cells and prompt arrival of effector CD8 T cells in the lungs. Front Immunol 10:1370. https://doi.org/10.3389/fimmu.2019.01370 [DOI: 10.3389/fimmu.2019.01370]
  156. Sul O-J, Ra SW (2021) Quercetin prevents LPS-induced oxidative stress and inflammation by modulating NOX2/ROS/NF-kB in lung epithelial cells. Molecules 26:6949. https://doi.org/10.3390/molecules26226949 [DOI: 10.3390/molecules26226949]
  157. Sun S-C (2011) Non-canonical NF-��B signaling pathway. Cell Res 21:71���85. https://doi.org/10.1038/cr.2010.177 [DOI: 10.1038/cr.2010.177]
  158. Sun Y, Zhang J, Yan Y et al (2011) The protective effect of C-phycocyanin on paraquat-induced acute lung injury in rats. Environ Toxicol Pharmacol 32:168���174. https://doi.org/10.1016/j.etap.2011.04.008 [DOI: 10.1016/j.etap.2011.04.008]
  159. Sun S-C, Chang J-H, Jin J (2013) Regulation of nuclear factor-��B in autoimmunity. Trends Immunol 34:282���289. https://doi.org/10.1016/j.it.2013.01.004 [DOI: 10.1016/j.it.2013.01.004]
  160. Tang H, Gao L, Mao J et al (2016) Salidroside protects against bleomycin-induced pulmonary fibrosis: activation of Nrf2-antioxidant signaling, and inhibition of NF-��B and TGF-��1/Smad-2/-3 pathways. Cell Stress Chaperones 21:239���249. https://doi.org/10.1007/s12192-015-0654-4 [DOI: 10.1007/s12192-015-0654-4]
  161. Thakur AK, Chellappan DK, Dua K et al (2020) Patented therapeutic drug delivery strategies for targeting pulmonary diseases. Expert Opin Ther Pat 30:375���387. https://doi.org/10.1080/13543776.2020.1741547 [DOI: 10.1080/13543776.2020.1741547]
  162. Thakur D, Taliaferro O, Atkinson M et al (2022) Inhibition of nuclear factor ��B in the lungs protect bleomycin-induced lung fibrosis in mice. Mol Biol Rep 49:3481���3490. https://doi.org/10.1007/s11033-022-07185-8 [DOI: 10.1007/s11033-022-07185-8]
  163. Tian B, Patrikeev I, Ochoa L et al (2017) NF-��B mediates mesenchymal transition, remodeling, and pulmonary fibrosis in response to chronic inflammation by viral RNA patterns. Am J Respir Cell Mol Biol 56:506���520. https://doi.org/10.1165/rcmb.2016-0259OC [DOI: 10.1165/rcmb.2016-0259OC]
  164. Traboulsi H, Cloutier A, Boyapelly K et al (2015) The flavonoid isoliquiritigenin reduces lung inflammation and mouse morbidity during influenza virus infection. Antimicrob Agents Chemother 59:6317���6327. https://doi.org/10.1128/AAC.01098-15 [DOI: 10.1128/AAC.01098-15]
  165. Tzeng H-P, Lan K-C, Yang T-H et al (2017) Benzo[a]pyrene activates interleukin-6 induction & suppresses nitric oxide-induced apoptosis in rat vascular smooth muscle cells. PLoS ONE 12:e0178063. https://doi.org/10.1371/journal.pone.0178063 [DOI: 10.1371/journal.pone.0178063]
  166. Tzouvelekis A, Bonella F, Spagnolo P (2015) Update on therapeutic management of idiopathic pulmonary fibrosis. Ther Clin Risk Manag 11:359���370. https://doi.org/10.2147/TCRM.S69716 [DOI: 10.2147/TCRM.S69716]
  167. Ubags NDJ, Marsland BJ (2017) Mechanistic insight into the function of the microbiome in lung diseases. Eur Respir J 50:1602467. https://doi.org/10.1183/13993003.02467-2016 [DOI: 10.1183/13993003.02467-2016]
  168. Vallabhapurapu S, Karin M (2009) Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27:693���733. https://doi.org/10.1146/annurev.immunol.021908.132641 [DOI: 10.1146/annurev.immunol.021908.132641]
  169. Vogel CFA, Matsumura F (2009) A new cross-talk between the aryl hydrocarbon receptor and RelB, a member of the NF-kappaB family. Biochem Pharmacol 77:734���745. https://doi.org/10.1016/j.bcp.2008.09.036 [DOI: 10.1016/j.bcp.2008.09.036]
  170. Wan L, Meng D, Wang H et al (2018) Preventive and therapeutic effects of thymol in a lipopolysaccharide-induced acute lung injury mice model. Inflammation 41:183���192. https://doi.org/10.1007/s10753-017-0676-4 [DOI: 10.1007/s10753-017-0676-4]
  171. Wang L, Ma Q (2018) Clinical benefits and pharmacology of scutellarin: a comprehensive review. Pharmacol Ther 190:105���127. https://doi.org/10.1016/j.pharmthera.2018.05.006 [DOI: 10.1016/j.pharmthera.2018.05.006]
  172. Wang J, Li J-Z, Lu A-X et al (2014) Anticancer effect of salidroside on A549 lung cancer cells through inhibition of oxidative stress and phospho-p38 expression. Oncol Lett 7:1159���1164. https://doi.org/10.3892/ol.2014.1863 [DOI: 10.3892/ol.2014.1863]
  173. Wang G, Hu Z, Fu Q et al (2017) Resveratrol mitigates lipopolysaccharide-mediated acute inflammation in rats by inhibiting the TLR4/NF-��Bp65/MAPKs signaling cascade. Sci Rep 7:45006. https://doi.org/10.1038/srep45006 [DOI: 10.1038/srep45006]
  174. Wang K, Zhang T, Lei Y et al (2018) Identification of ANXA2 (annexin A2) as a specific bleomycin target to induce pulmonary fibrosis by impeding TFEB-mediated autophagic flux. Autophagy 14:269���282. https://doi.org/10.1080/15548627.2017.1409405 [DOI: 10.1080/15548627.2017.1409405]
  175. Wang Z, Chen Z, Li B et al (2020) Curcumin attenuates renal interstitial fibrosis of obstructive nephropathy by suppressing epithelial-mesenchymal transition through inhibition of the TLR4/NF-��B and PI3K/AKT signalling pathways. Pharm Biol 58:828. https://doi.org/10.1080/13880209.2020.1809462 [DOI: 10.1080/13880209.2020.1809462]
  176. Woo J, Cho S, Lee CJ (2014) Isoliquiritigenin, a chalcone compound, enhances Spontaneous Inhibitory Postsynaptic Response. Exp Neurobiol 23:163���168. https://doi.org/10.5607/en.2014.23.2.163 [DOI: 10.5607/en.2014.23.2.163]
  177. Wu Q, Li R, Soromou LW et al (2014) p-Synephrine suppresses lipopolysaccharide-induced acute lung injury by inhibition of the NF-��B signaling pathway. Inflamm Res off J Eur Histamine Res Soc Al 63:429���439. https://doi.org/10.1007/s00011-014-0715-7 [DOI: 10.1007/s00011-014-0715-7]
  178. Wu Y, Nie Y, Huang J et al (2019) Protostemonine alleviates heat-killed methicillin-resistant Staphylococcus aureus-induced acute lung injury through MAPK and NF-��B signaling pathways. Int Immunopharmacol 77:105964. https://doi.org/10.1016/j.intimp.2019.105964 [DOI: 10.1016/j.intimp.2019.105964]
  179. Xie X, Sun S, Zhong W et al (2014) Zingerone attenuates lipopolysaccharide-induced acute lung injury in mice. Int Immunopharmacol 19:103���109. https://doi.org/10.1016/j.intimp.2013.12.028 [DOI: 10.1016/j.intimp.2013.12.028]
  180. Xie Y, Li W, Lu C et al (2019) The effects of phycocyanin on bleomycin-induced pulmonary fibrosis and the intestinal microbiota in C57BL/6 mice. Appl Microbiol Biotechnol 103:8559���8569. https://doi.org/10.1007/s00253-019-10018-7 [DOI: 10.1007/s00253-019-10018-7]
  181. Xiong Y, Cui X, Zhou Y et al (2021) Dehydrocostus lactone inhibits BLM-induced pulmonary fibrosis and inflammation in mice via the JNK and p38 MAPK-mediated NF-��B signaling pathways. Int Immunopharmacol 98:107780. https://doi.org/10.1016/j.intimp.2021.107780 [DOI: 10.1016/j.intimp.2021.107780]
  182. Xiong D, Gao F, Shao J et al (2023) Arctiin-encapsulated DSPE-PEG bubble-like nanoparticles inhibit alveolar epithelial type 2 cell senescence to alleviate pulmonary fibrosis via the p38/p53/p21 pathway. Front Pharmacol 14:1141800. https://doi.org/10.3389/fphar.2023.1141800 [DOI: 10.3389/fphar.2023.1141800]
  183. Yang C, Yang W, He Z et al (2020) Kaempferol improves lung ischemia-reperfusion injury via antiinflammation and antioxidative stress regulated by SIRT1/HMGB1/NF-��B axis. Front Pharmacol 10:1635. https://doi.org/10.3389/fphar.2019.01635 [DOI: 10.3389/fphar.2019.01635]
  184. Yildiz S, Turan S, Kiralan M, Ramadan MF (2021) Antioxidant properties of thymol, carvacrol, and thymoquinone and its efficiencies on the stabilization of refined and stripped corn oils. J Food Meas Charact 15:621���632. https://doi.org/10.1007/s11694-020-00665-0 [DOI: 10.1007/s11694-020-00665-0]
  185. Yong J, Shu H, Zhang X et al (2024) Natural products-based inhaled formulations for treating pulmonary diseases. Int J Nanomedicine 19:1723���1748. https://doi.org/10.2147/IJN.S451206 [DOI: 10.2147/IJN.S451206]
  186. Yu D, Liu X, Zhang G et al (2018) Isoliquiritigenin inhibits cigarette smoke-induced COPD by attenuating inflammation and oxidative stress via the regulation of the Nrf2 and NF-��B signaling pathways. Front Pharmacol 9:1001. https://doi.org/10.3389/fphar.2018.01001 [DOI: 10.3389/fphar.2018.01001]
  187. Yu H, Lin L, Zhang Z et al (2020) Targeting NF-��B pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther 5:1���23. https://doi.org/10.1038/s41392-020-00312-6 [DOI: 10.1038/s41392-020-00312-6]
  188. Zeng J, Chen Y, Ding R et al (2017) Isoliquiritigenin alleviates early brain injury after experimental intracerebral hemorrhage via suppressing ROS- and/or NF-��B-mediated NLRP3 inflammasome activation by promoting Nrf2 antioxidant pathway. J Neuroinflammation 14:119. https://doi.org/10.1186/s12974-017-0895-5 [DOI: 10.1186/s12974-017-0895-5]
  189. Zgheib C, Xu J, Liechty KW (2014) Targeting inflammatory cytokines and extracellular matrix composition to promote wound regeneration. Adv Wound Care 3:344. https://doi.org/10.1089/wound.2013.0456 [DOI: 10.1089/wound.2013.0456]
  190. Zhang M, Dong M, Liu W et al (2014) 1��,25-dihydroxyvitamin D3 ameliorates seawater aspiration-induced acute lung injury via NF-��B and RhoA/Rho kinase pathways. PLoS ONE 9:e104507. https://doi.org/10.1371/journal.pone.0104507 [DOI: 10.1371/journal.pone.0104507]
  191. Zhang J, Wang C, Wang H et al (2021) Loganin alleviates sepsis-induced acute lung injury by regulating macrophage polarization and inhibiting NLRP3 inflammasome activation. Int Immunopharmacol 95:107529. https://doi.org/10.1016/j.intimp.2021.107529 [DOI: 10.1016/j.intimp.2021.107529]
  192. Zhang L, Kong D, Huang J et al (2022) The therapeutic effect and the possible mechanism of C-phycocyanin in lipopolysaccharide and seawater-induced acute lung injury. Drug des Devel Ther 16:1025���1040. https://doi.org/10.2147/DDDT.S347772 [DOI: 10.2147/DDDT.S347772]
  193. Zhu X, Lei X, Dong W (2017) Resveratrol as a potential therapeutic drug for respiratory system diseases. Drug des Devel Ther 11:3591���3598. https://doi.org/10.2147/DDDT.S148868 [DOI: 10.2147/DDDT.S148868]

Word Cloud

Created with Highcharts 10.0.0PFNF-��Bbioactivecompoundssignallingpathwayfibrosislungpathwaysstudiespotentialtargettherapeuticusedtreatmentconditionfactor-kappaBPulmonaryslowirreparabledamagecausedaccumulationscartissueeventuallyresultsorgandysfunctionfatalitygasexchangefailureOneextensivelystudiedinflammatoryreportedlyinvolvedepithelial-mesenchymaltransitionmyofibroblastdifferentiationcellularprocessesAdditionallyevidencecanemployeddevelopingagentscurrentscenarioFDA-approveddrugsnintedanibpirfenidonesideeffectsRecentlyusageattractedattentionreviewfocusesinvolvementsignificancephytocompoundsregulatingvitrovivorevealNF-��B-targetedplant-basedsignificantlyamelioratewellimprovehealthDatabasesScopusPubMedWebScienceconductliteraturesurveyscompiledataconclusionplant-derivedpotentenoughbiologicalpropertieshighlyeffectivestrategyfutureBeyondpill:incriminationnucleartargetedphytomedicinepulmonaryAcuteinjuryChemokinesCytokinesNuclearPhytocompounds

Similar Articles

Cited By

No available data.