Enhancing Chemosensitivity in Drug-Resistant Breast Cancer Cells Using β-Cyclodextrin-Loaded Quercetin and Doxorubicin Inclusion Complex via Modulating SRC/PI3K/Akt Pathway.

Charan Singh Pawar, Karankumar Balamurugan, Sugumar Baskar, N Rajendra Prasad, Haseeb A Khan
Author Information
  1. Charan Singh Pawar: Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, 608002, Tamil Nadu, India.
  2. Karankumar Balamurugan: Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, 608002, Tamil Nadu, India.
  3. Sugumar Baskar: Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, 608002, Tamil Nadu, India.
  4. N Rajendra Prasad: Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, 608002, Tamil Nadu, India. drprasadnr@gmail.com.
  5. Haseeb A Khan: Department of Biochemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.

Abstract

The challenge of multidrug resistance (MDR) in cancer, which hindered successful chemotherapy, was primarily due to the increased activity of drug efflux transporters in cancer cells. This study explored the potential of a nanosized inclusion complex to overcome drug resistance. The inclusion complex that we prepared contains a beta-cyclodextrin-based formulation encapsulating quercetin (QUE) and doxorubicin (DOX) (β-CD@QD IC), designed to enhance drug delivery and overcome MDR in cancer cells. Through integrative network pharmacology, 92 common targets were identified between QUE and cancer MDR, with SRC kinase emerging as a key target for inhibiting ABCG2 expression in MCF-7/DOX cancer cells. The β-CD@QD IC was formulated via freeze-drying method and characterized using spectroscopic and microscopic techniques. In vitro drug release studies showed that QUE and DOX from β-CD@QD IC exhibited sustained, controlled release, following Higuchi model kinetics. The anticancer efficacy of the complex was tested on MCF-7/DOX cells, where QUE modulated the ABCG2 efflux pump, enhancing the intracellular accumulation of DOX. In vitro assays demonstrated that the inclusion complex significantly increased cell cytotoxicity, induced nuclear condensation, disrupted mitochondrial membrane potential (ΔΨm), elevated reactive oxygen species (ROS) production, and triggered apoptosis-related morphological changes. Hoechst efflux studies demonstrated that QUE effectively inhibited the ABCG2 efflux pump, leading to increased accumulation of Hoechst dye in MCF-7/DOX cancer cells. QUE suppressed SRC kinase signaling, leading to decreased PI3K/Akt expression and reduced ABCG2 overexpression in MCF-7/DOX cells. This study indicated that the β-CD@QD IC loaded with QUE effectively overcame DOX resistance in MCF-7/DOX cells.

Keywords

References

  1. Ahmad, A. (2019). Breast cancer statistics: Recent trends. In Advances in Experimental Medicine and Biology. https://doi.org/10.1007/978-3-030-20301-6_1 [DOI: 10.1007/978-3-030-20301-6_1]
  2. Girigoswami, A., Adhikesavan, H., Mudenkattil, S., Devi, S., & Girigoswami, K. (2023). Role of cerium oxide nanoparticles and doxorubicin in improving cancer management: A mini review. Current Pharmaceutical Design. https://doi.org/10.2174/0113816128270290231029161741 [DOI: 10.2174/0113816128270290231029161741]
  3. Wang, T., Dong, J., Yuan, X., Wen, H., Wu, L., Liu, J., … Deng, W. (2021). A new chalcone derivative C49 reverses doxorubicin resistance in MCF-7/DOX cells by inhibiting P-glycoprotein expression. Frontiers in Pharmacology. https://doi.org/10.3389/fphar.2021.653306
  4. Nicoletto, R. E., & Ofner, C. M. (2022). Cytotoxic mechanisms of doxorubicin at clinically relevant concentrations in breast cancer cells. Cancer Chemotherapy and Pharmacology. https://doi.org/10.1007/s00280-022-04400-y [DOI: 10.1007/s00280-022-04400-y]
  5. Kciuk, M., Gielecińska, A., Mujwar, S., Kołat, D., Kałuzińska-Kołat, Ż, Celik, I., & Kontek, R. (2023). Doxorubicin—An agent with multiple mechanisms of anticancer activity. Cells. https://doi.org/10.3390/cells12040659 [DOI: 10.3390/cells12040659]
  6. Liu, C., Chen, H., Guo, S., Liu, Q., Chen, Z., Huang, H., … Wang, L. (2023). Anti-breast cancer-induced cardiomyopathy: Mechanisms and future directions. Biomedicine and Pharmacotherapy. https://doi.org/10.1016/j.biopha.2023.115373
  7. Nanayakkara, A. K., Vogel, P. D., & Wise, J. G. (2019). Prolonged inhibition of P-glycoprotein after exposure to chemotherapeutics increases cell mortality in multidrug resistant cultured cancer cells. PLoS ONE. https://doi.org/10.1371/journal.pone.0217940 [DOI: 10.1371/journal.pone.0217940]
  8. Coley, H. M. (2008). Mechanisms and strategies to overcome chemotherapy resistance in metastatic breast cancer. Cancer Treatment Reviews. https://doi.org/10.1016/j.ctrv.2008.01.007 [DOI: 10.1016/j.ctrv.2008.01.007]
  9. Mao, J., Qiu, L., Ge, L., Zhou, J., Ji, Q., Yang, Y., … Chen, J. (2021). Overcoming multidrug resistance by intracellular drug release and inhibiting P-glycoprotein efflux in breast cancer. Biomedicine and Pharmacotherapy. https://doi.org/10.1016/j.biopha.2020.111108
  10. Tang, Y., Wang, Y., Deosarkar, S., Soroush, F., Kiani, M. F., & Wang, B. (2015). Fast, stable induction of P-glycoprotein-mediated drug resistance in BT-474 breast cancer cells by stable transfection of ABCB1 gene. Anticancer Research.
  11. Calcagno, A. M., Fostel, J. M., To, K. K. W., Salcido, C. D., Martin, S. E., Chewning, K. J., … Ambudkar, S. V. (2008). Single-step doxorubicin-selected cancer cells overexpress the ABCG2 drug transporter through epigenetic changes. British Journal of Cancer. https://doi.org/10.1038/sj.bjc.6604334
  12. Ke, L., Li, Z., Fan, X., Loh, X. J., Cheng, H., Wu, Y. L., & Li, Z. (2021). Cyclodextrin-based hybrid polymeric complex to overcome dual drug resistance mechanisms for cancer therapy. Polymers. https://doi.org/10.3390/polym13081254 [DOI: 10.3390/polym13081254]
  13. Shukla, S. K., Chan, A., Parvathaneni, V., Kanabar, D. D., Patel, K., Ayehunie, S., … Gupta, V. (2020). Enhanced solubility, stability, permeation and anti-cancer efficacy of Celastrol-β-cyclodextrin inclusion complex. Journal of Molecular Liquids. https://doi.org/10.1016/j.molliq.2020.113936
  14. Shurfa, M. K., Girigoswami, A., Sakthi Devi, R., Harini, K., Agraharam, G., Deepika, B., & Girigoswami, K. (2023). Combinatorial effect of doxorubicin entrapped in alginate-chitosan hybrid polymer and cerium oxide nanocomposites on skin cancer management in mice. Journal of Pharmaceutical Sciences, 112(11), 2891–2900. https://doi.org/10.1016/j.xphs.2023.08.014 [DOI: 10.1016/j.xphs.2023.08.014]
  15. Sanku, R. K. K., Karakus, O. O., Ilies, M., & Ilies, M. A. (2019). Inclusion complexes in drug delivery and drug targeting: Formation, characterization, and biological applications. In ACS Symposium Series. https://doi.org/10.1021/bk-2019-1309.ch009 [DOI: 10.1021/bk-2019-1309.ch009]
  16. Shen, Q., Shen, Y., Jin, F., Du, Y.Z., & Ying, X. Y. (2020). Paclitaxel/hydroxypropyl-β-cyclodextrin complex-loaded liposomes for overcoming multidrug resistance in cancer chemotherapy. Journal of Liposome Research. https://doi.org/10.1080/08982104.2019.1579838
  17. Yao, Q., Lin, M. T., Lan, Q. H., Huang, Z. W., Zheng, Y. W., Jiang, X., … Zhao, Y. Z. (2020). In vitro and in vivo evaluation of didymin cyclodextrin inclusion complexes: characterization and chemosensitization activity. Drug Delivery. https://doi.org/10.1080/10717544.2019.1704941
  18. Pardhi, V. P., Patel, P., Vaish, A., & Jain, K. (2024). Inclusion complexes of bedaquiline fumarate with β-cyclodextrin and its derivatives: In silico, in vitro and in vivo evaluation. Journal of Drug Delivery Science and Technology. https://doi.org/10.1016/j.jddst.2023.105253 [DOI: 10.1016/j.jddst.2023.105253]
  19. Sahu, K. M., Patra, S., & Swain, S. K. (2023). Host-guest drug delivery by β-cyclodextrin assisted polysaccharide vehicles: A review. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2023.124338 [DOI: 10.1016/j.ijbiomac.2023.124338]
  20. Liu, Z., Ye, L., Xi, J., Wang, J., & Feng, Z. G. (2021). Cyclodextrin polymers: Structure, synthesis, and use as drug carriers. Progress in Polymer Science. https://doi.org/10.1016/j.progpolymsci.2021.101408
  21. Gandhi, S. R., Quintans, J. D. S. S., Gandhi, G. R., Araújo, A. A. D. S., & Quintans Júnior, L. J. (2020). The use of cyclodextrin inclusion complexes to improve anticancer drug profiles: A systematic review. Expert Opinion on Drug Delivery. https://doi.org/10.1080/17425247.2020.1776261 [DOI: 10.1080/17425247.2020.1776261]
  22. Tian, B., Hua, S., & Liu, J. (2020). Cyclodextrin-based delivery systems for chemotherapeutic anticancer drugs: A review. Carbohydrate Polymers. https://doi.org/10.1016/j.carbpol.2019.115805 [DOI: 10.1016/j.carbpol.2019.115805]
  23. Gidwani, B., & Vyas, A. (2015). A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed Research International. https://doi.org/10.1155/2015/198268 [DOI: 10.1155/2015/198268]
  24. Wang, H., & Huang, Y. (2020). Combination therapy based on nano codelivery for overcoming cancer drug resistance. Medicine in Drug Discovery. https://doi.org/10.1016/j.medidd.2020.100024 [DOI: 10.1016/j.medidd.2020.100024]
  25. Salehi, B., Machin, L., Monzote, L., Sharifi-Rad, J., Ezzat, S. M., Salem, M. A., … Cho, W. C. (2020). Therapeutic potential of quercetin: New insights and perspectives for human health. ACS Omega. https://doi.org/10.1021/acsomega.0c01818
  26. Shivani, Singh, G., Narwal, S., Chopra, B., & Dhingra, A. K. (2023). Quercetin-based nanoformulation: A potential approach for cancer treatment. Anti-Cancer Agents in Medicinal Chemistry. https://doi.org/10.2174/1871520623666230817101926
  27. Shahbaz, M., Naeem, H., Momal, U., Imran, M., Alsagaby, S. A., Al Abdulmonem, W., … Al Jbawi, E. (2023). Anticancer and apoptosis inducing potential of quercetin against a wide range of human malignancies. International Journal of Food Properties. https://doi.org/10.1080/10942912.2023.2252619
  28. Teng, H., Deng, H., He, Y., Lv, Q., & Chen, L. (2021). The role of dietary flavonoids for modulation of ATP binding cassette transporter mediated multidrug resistance. eFood. https://doi.org/10.53365/efood.k/144604
  29. Liu, S., Li, R., Qian, J., Sun, J., Li, G., Shen, J., & Xie, Y. (2020). Combination therapy of doxorubicin and quercetin on multidrug-resistant breast cancer and their sequential delivery by reduction-sensitive hyaluronic acid-based conjugate/ d -α-tocopheryl poly(ethylene glycol) 1000 succinate mixed micelles. Molecular Pharmaceutics. https://doi.org/10.1021/acs.molpharmaceut.0c00138 [DOI: 10.1021/acs.molpharmaceut.0c00138]
  30. Ghafouri-Fard, S., Shoorei, H., Khanbabapour Sasi, A., Taheri, M., & Ayatollahi, S. A. (2021). The impact of the phytotherapeutic agent quercetin on expression of genes and activity of signaling pathways. Biomedicine and Pharmacotherapy. https://doi.org/10.1016/j.biopha.2021.111847 [DOI: 10.1016/j.biopha.2021.111847]
  31. Tang, S. M., Deng, X. T., Zhou, J., Li, Q. P., Ge, X. X., & Miao, L. (2020). Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomedicine and Pharmacotherapy. https://doi.org/10.1016/j.biopha.2019.109604 [DOI: 10.1016/j.biopha.2019.109604]
  32. Yu, J., Chen, H., Jiang, L., Wang, J., Dai, J., & Wang, J. (2019). Codelivery of adriamycin and P-gp inhibitor quercetin using PEGylated liposomes to overcome cancer drug resistance. Journal of Pharmaceutical Sciences. https://doi.org/10.1016/j.xphs.2018.12.016 [DOI: 10.1016/j.xphs.2018.12.016]
  33. Mirzaei, S., Gholami, M. H., Hashemi, F., Zabolian, A., Farahani, M. V., Hushmandi, K., … Orive, G. (2022). Advances in understanding the role of P-gp in doxorubicin resistance: Molecular pathways, therapeutic strategies, and prospects. Drug Discovery Today. https://doi.org/10.1016/j.drudis.2021.09.020
  34. Jianmongkol, S. (2021). Overcoming P-glycoprotein-mediated doxorubicin resistance. In Advances in Precision Medicine Oncology. https://doi.org/10.5772/intechopen.95553 [DOI: 10.5772/intechopen.95553]
  35. Bharathiraja, P., Balamurugan, K., Govindasamy, C., Prasad, N. R., & Pore, P. M. (2024). Solasodine targets NF-κB signaling to overcome P-glycoprotein mediated multidrug resistance in cancer. Experimental Cell Research, 441(1), 114153. https://doi.org/10.1016/j.yexcr.2024.114153 [DOI: 10.1016/j.yexcr.2024.114153]
  36. Pawar, C. S., Rajendra Prasad, N., Yadav, P., Muthu Vijayan Enoch, I. V., Manikantan, V., Dey, B., & Baruah, P. (2023). Enhanced delivery of quercetin and doxorubicin using β-cyclodextrin polymer to overcome P-glycoprotein mediated multidrug resistance. International Journal of Pharmaceutics. https://doi.org/10.1016/j.ijpharm.2023.122763
  37. Hansda, S., Mitra, A., & Ghosh, R. (2021). Studies to explore the UVA photosensitizing action of 9-phenylacridine in cells by interaction with DNA. Nucleosides, Nucleotides and Nucleic Acids. https://doi.org/10.1080/15257770.2021.1880011 [DOI: 10.1080/15257770.2021.1880011]
  38. Hansda, S., Ghosh, G., & Ghosh, R. (2020). 9-phenyl acridine photosensitizes A375 cells to UVA radiation. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e04733 [DOI: 10.1016/j.heliyon.2020.e04733]
  39. Ding, R., Shi, J., Pabon, K., & Scotto, K. W. (2012). Xanthines down-regulate the drug transporter ABCG2 and reverse multidrug resistance. Molecular Pharmacology. https://doi.org/10.1124/mol.111.075556 [DOI: 10.1124/mol.111.075556]
  40. Bhattacharjee, S. (2016). DLS and zeta potential - What they are and what they are not? Journal of Controlled Release. https://doi.org/10.1016/j.jconrel.2016.06.017 [DOI: 10.1016/j.jconrel.2016.06.017]
  41. Demirbolat, M., Değim, Z., spsampsps Değim, İ. T. (2021). Zeta potential determination of targeted nanoparticles. In Drug Delivery with Targeted Nanoparticles: In Vitro and in Vivo Evaluation Methods. https://doi.org/10.1201/9781003164739-2
  42. Başaran, E., Öztürk, A. A., Şenel, B., Demirel, M., & Sarica, Ş. (2022). Quercetin, rutin and quercetin-rutin incorporated hydroxypropyl β-cyclodextrin inclusion complexes. European Journal of Pharmaceutical Sciences. https://doi.org/10.1016/j.ejps.2022.106153
  43. Bancirova, M. (2015). Changes of the quercetin absorption spectra in dependence on solvent. Chemistry Journal.
  44. Gomathi, R., Suhana, H., & Paradesi, D. (2021). Characterization study of cytotoxicity of green synthesized ZnO nanoparticles loaded with anti-cancer doxorubicin drug. ChemistrySelect. https://doi.org/10.1002/slct.202100358 [DOI: 10.1002/slct.202100358]
  45. Han, X., Zhang, Z., Shen, H., Zheng, J., & Zhang, G. (2019). Comparison of structures, physicochemical properties and in vitro bioactivity between ferulic acid-β-cyclodextrin conjugate and the corresponding inclusion complex. Food Research International. https://doi.org/10.1016/j.foodres.2019.108619 [DOI: 10.1016/j.foodres.2019.108619]
  46. Shah, S., Chandra, A., Kaur, A., Sabnis, N., Lacko, A., Gryczynski, Z., … Gryczynski, I. (2017). Fluorescence properties of doxorubicin in PBS buffer and PVA films. Journal of Photochemistry and Photobiology B: Biology. https://doi.org/10.1016/j.jphotobiol.2017.03.024
  47. Prutskij, T., Deriabina, A., Melendez, F. J., Castro, M. E., Trejo, L. C., Vazquez Leon, G. D., … Perova, T. S. (2021). Concentration-dependent fluorescence emission of quercetin. Chemosensors. https://doi.org/10.3390/chemosensors9110315
  48. Mohamed, N. (2020). Synthesis of hybrid chitosan silver nanoparticles loaded with doxorubicin with promising anti-cancer activity. BioNanoScience. https://doi.org/10.1007/s12668-020-00760-y [DOI: 10.1007/s12668-020-00760-y]
  49. Golonka, I., Wilk, S., & Musiał, W. (2020). The influence of UV radiation on the degradation of pharmaceutical formulations containing quercetin. Molecules. https://doi.org/10.3390/MOLECULES25225454 [DOI: 10.3390/MOLECULES25225454]
  50. Ameli, H., & Alizadeh, N. (2022). Targeted delivery of capecitabine to colon cancer cells using nano polymeric micelles based on beta cyclodextrin. RSC Advances. https://doi.org/10.1039/d1ra07791k [DOI: 10.1039/d1ra07791k]
  51. Pawar, C. S., Prasad, N. R., Yadav, P., & Dey, B. (2024). Quercetin and doxorubicin co-delivery using β-cyclodextrin nanocarrier overcomes multi-drug resistance in cancer cells via targeting Akt/NF-κB/ABCB1 signaling pathway. Emergent Materials. https://doi.org/10.1007/s42247-024-00845-4 [DOI: 10.1007/s42247-024-00845-4]
  52. Soltantabar, P., Calubaquib, E. L., Mostafavi, E., Biewer, M. C., & Stefan, M. C. (2020). Enhancement of loading efficiency by coloading of doxorubicin and quercetin in thermoresponsive polymeric micelles. Biomacromolecules. https://doi.org/10.1021/acs.biomac.9b01742 [DOI: 10.1021/acs.biomac.9b01742]
  53. Yu, P., Yu, H., Guo, C., Cui, Z., Chen, X., Yin, Q., … Li, Y. (2015). Reversal of doxorubicin resistance in breast cancer by mitochondria-targeted pH-responsive micelles. Acta Biomaterialia. https://doi.org/10.1016/j.actbio.2014.12.001
  54. Anbazhagan, R., Muthusamy, G., Krishnamoorthi, R., Kumaresan, S., Rajendra Prasad, N., Lai, J. Y., … Tsai, H. C. (2021). PAMAM G4.5 dendrimers for targeted delivery of ferulic acid and paclitaxel to overcome P-glycoprotein-mediated multidrug resistance. Biotechnology and Bioengineering. https://doi.org/10.1002/bit.27645
  55. Torki, Z., Ghavi, D., Hashemi, S., Rahmati, Y., Rahmanpour, D., Pornour, M., & Alivand, M. R. (2021). The related miRNAs involved in doxorubicin resistance or sensitivity of various cancers: An update. Cancer Chemotherapy and Pharmacology. https://doi.org/10.1007/s00280-021-04337-8 [DOI: 10.1007/s00280-021-04337-8]
  56. Maleki Dana, P., Sadoughi, F., Asemi, Z., & Yousefi, B. (2022). The role of polyphenols in overcoming cancer drug resistance: A comprehensive review. Cellular and Molecular Biology Letters. https://doi.org/10.1186/s11658-021-00301-9 [DOI: 10.1186/s11658-021-00301-9]
  57. Chaisit, T., Siripong, P., & Jianmongkol, S. (2017). Rhinacanthin-C enhances doxorubicin cytotoxicity via inhibiting the functions of P-glycoprotein and MRP2 in breast cancer cells. European Journal of Pharmacology. https://doi.org/10.1016/j.ejphar.2016.12.002 [DOI: 10.1016/j.ejphar.2016.12.002]
  58. Zhu, Z., Cui, L., Yang, J., Vong, C. T., Hu, Y., Xiao, J., … Zhong, Z. (2021). Anticancer effects of asiatic acid against doxorubicin-resistant breast cancer cells via an AMPK-dependent pathway in vitro. Phytomedicine. https://doi.org/10.1016/j.phymed.2021.153737
  59. Ehsanimehr, S., Moghadam, P. N., Dehaen, W., & Irannejad, V. S. (2021). PEI grafted Fe3O4@SiO2@SBA-15 labeled FA as a pH-sensitive mesoporous magnetic and biocompatible nanocarrier for targeted delivery of doxorubicin to MCF-7 cell line. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 615(February), 126302. https://doi.org/10.1016/j.colsurfa.2021.126302 [DOI: 10.1016/j.colsurfa.2021.126302]
  60. Gao, A. M., Ke, Z. P., Wang, J. N., Yang, J. Y., Chen, S. Y., & Chen, H. (2013). Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathway. Carcinogenesis. https://doi.org/10.1093/carcin/bgt108 [DOI: 10.1093/carcin/bgt108]
  61. Luo, J., Zou, H., Guo, Y., Tong, T., Ye, L., Zhu, C., … Li, P. (2022). SRC kinase-mediated signaling pathways and targeted therapies in breast cancer. Breast Cancer Research. https://doi.org/10.1186/s13058-022-01596-y
  62. Kim, T. H., Shin, Y. J., Won, A. J., Lee, B. M., Choi, W. S., Jung, J. H., … Kim, H. S. (2014). Resveratrol enhances chemosensitivity of doxorubicin in multidrug-resistant human breast cancer cells via increased cellular influx of doxorubicin. Biochimica et Biophysica Acta - General Subjects. https://doi.org/10.1016/j.bbagen.2013.10.023
  63. Shakibaei, M., Mobasheri, A., Lueders, C., Busch, F., Shayan, P., & Goel, A. (2013). Curcumin enhances the effect of chemotherapy against colorectal cancer cells by inhibition of NF-κB and Src protein kinase signaling pathways. PLoS One. https://doi.org/10.1371/journal.pone.0057218 [DOI: 10.1371/journal.pone.0057218]

Grants

  1. DRD/RUSA 2.0/ R&I/Field 2/2021/Rashtriya Uchchatar Shiksha Abhiyan
  2. RSPD2025R770/Researchers Supporting Project Number

Word Cloud

Created with Highcharts 10.0.0cellsQUEcancercomplexABCG2MCF-7/DOXresistancedrugeffluxinclusionDOXβ-CD@QDICMDRincreasedstudypotentialovercomepharmacologySRCkinaseexpressionviavitroreleasestudiespumpaccumulationdemonstratedHoechsteffectivelyleadingQuercetinDoxorubicinchallengemultidrughinderedsuccessfulchemotherapyprimarilydueactivitytransportersexplorednanosizedpreparedcontainsbeta-cyclodextrin-basedformulationencapsulatingquercetindoxorubicindesignedenhancedeliveryintegrativenetwork92commontargetsidentifiedemergingkeytargetinhibitingformulatedfreeze-dryingmethodcharacterizedusingspectroscopicmicroscopictechniquesshowedexhibitedsustainedcontrolledfollowingHiguchimodelkineticsanticancerefficacytestedmodulatedenhancingintracellularassayssignificantlycellcytotoxicityinducednuclearcondensationdisruptedmitochondrialmembraneΔΨmelevatedreactiveoxygenspeciesROSproductiontriggeredapoptosis-relatedmorphologicalchangesinhibiteddyesuppressedsignalingdecreasedPI3K/AktreducedoverexpressionindicatedloadedovercameEnhancingChemosensitivityDrug-ResistantBreastCancerCellsUsingβ-Cyclodextrin-LoadedInclusionComplexModulatingSRC/PI3K/AktPathwayβ-cyclodextrinMultidrugNetwork

Similar Articles

Cited By