Polyploidy drives changes in tissue allocation modifying whole-plant water relations.

Javier L��pez-Jurado, Ibrahim Bourbia, Timothy J Brodribb
Author Information
  1. Javier L��pez-Jurado: School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart TAS 7001, Australia. ORCID
  2. Ibrahim Bourbia: School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart TAS 7001, Australia. ORCID
  3. Timothy J Brodribb: School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart TAS 7001, Australia.

Abstract

Polyploid plants often display functional trait values distinct from those of diploids, influencing their stress tolerance and adaptive capacity. These differences shape how polyploids interact with their environment, a factor that is crucial to their evolutionary success. Here, we investigated the species complex Dianthus broteri, where ploidy level is known to correlate with water availability, as a model system to understand the possible link between ploidy and whole-plant water relations. We quantified allocation between leaves, xylem, and roots in 4 different ploidies of D. broteri (2��, 4��, 6��, 12��), and examined its relationship with hydraulic efficiency (Kr-s), water potential regulation, and stomatal conductance (gc) in response to varying leaf-to-air vapor pressure deficits (VPDL). A gradient in tissue allocation with increasing ploidy led to contrasting water-use strategies within D. broteri. Higher ploidy was associated with greater allocation to roots and xylem, resulting in higher Kr-s and gc and lower water potential gradients. Despite these differences, gc responses to VPDL were largely consistent across ploidies. In D. broteri 12��, the significant investment in water uptake and transport without a proportional increase in leaf area appeared suboptimal, incurring high xylem costs per unit water transport. However, this trade-off also led to increased water uptake and transport efficiency, potentially advantageous under water-limited conditions. Overall, our results indicate that multiple rounds of genome duplication cause substantial changes in whole-plant water relations, likely impacting water stress exposure in the field.

References

  1. New Phytol. 2005 Nov;168(2):275-92 [PMID: 16219068]
  2. New Phytol. 2012 Jan;193(1):30-50 [PMID: 22085245]
  3. Glob Chang Biol. 2018 Jul;24(7):2929-2938 [PMID: 29350812]
  4. Plant Cell Environ. 2017 Jun;40(6):872-880 [PMID: 27531223]
  5. New Phytol. 2010 Jul;187(2):542-551 [PMID: 20456054]
  6. Plant Physiol. 2019 Jan;179(1):74-87 [PMID: 30301776]
  7. New Phytol. 2013 Jul;199(2):559-570 [PMID: 23647069]
  8. Plant Physiol Biochem. 2016 Dec;109:397-405 [PMID: 27814569]
  9. J Exp Bot. 2011 May;62(8):2507-19 [PMID: 21273338]
  10. New Phytol. 2019 Apr;222(2):1076-1087 [PMID: 30585629]
  11. Plant Physiol. 2016 Mar;170(3):1504-23 [PMID: 26729798]
  12. Proc Natl Acad Sci U S A. 2022 Apr 12;119(15):e2118879119 [PMID: 35377798]
  13. Proc Natl Acad Sci U S A. 2023 Oct 10;120(41):e2307289120 [PMID: 37788315]
  14. Plant Physiol. 2021 Aug 3;186(4):1908-1918 [PMID: 34618104]
  15. Plant Physiol. 2023 Jul 3;192(3):1821-1835 [PMID: 37002827]
  16. J Exp Bot. 2024 Nov 15;75(21):6837-6849 [PMID: 39021256]
  17. Plant Cell. 2021 Mar 22;33(1):11-26 [PMID: 33751096]
  18. Plant Physiol. 2018 Jul;177(3):911-917 [PMID: 29735726]
  19. Proc Biol Sci. 2020 Nov 25;287(1939):20202154 [PMID: 33203329]
  20. Plant J. 2020 Feb;101(4):800-815 [PMID: 31677190]
  21. New Phytol. 2019 Oct;224(1):21-36 [PMID: 31069803]
  22. Tree Physiol. 2018 Apr 1;38(4):630-640 [PMID: 29036397]
  23. Development. 2016 Apr 1;143(7):1120-5 [PMID: 26903507]
  24. Plant Cell Environ. 2008 Nov;31(11):1557-64 [PMID: 18684244]
  25. Plant Cell Environ. 2013 Jan;36(1):149-58 [PMID: 22715809]
  26. Tree Physiol. 2017 May 1;37(5):604-616 [PMID: 28338717]
  27. Am J Bot. 2014 Oct;101(10):1711-25 [PMID: 25090999]
  28. Ann Bot. 2016 Nov;118(6):1127-1138 [PMID: 27578763]
  29. New Phytol. 2009 Nov;184(3):721-731 [PMID: 19703115]
  30. Nat Rev Genet. 2005 Nov;6(11):836-46 [PMID: 16304599]
  31. Plant Cell. 2018 Oct;30(10):2308-2329 [PMID: 30143539]
  32. Front Plant Sci. 2022 Aug 22;13:869423 [PMID: 36072313]
  33. New Phytol. 2011 Oct;192(1):256-265 [PMID: 21651562]
  34. Plant Cell Environ. 2022 Jul;45(7):2037-2061 [PMID: 35394651]
  35. PLoS One. 2017 Oct 12;12(10):e0185481 [PMID: 29023453]
  36. Plant Cell Environ. 2017 Jun;40(6):962-976 [PMID: 27739594]
  37. Curr Biol. 2022 Sep 26;32(18):4057-4063.e3 [PMID: 35944542]
  38. Plant Cell Environ. 2023 Nov;46(11):3273-3286 [PMID: 37488973]
  39. J Exp Bot. 2024 Feb 28;75(5):1601-1614 [PMID: 37988617]
  40. PLoS Biol. 2018 Jan 11;16(1):e2003706 [PMID: 29324757]
  41. Plant Cell Environ. 2014 Dec;37(12):2722-37 [PMID: 24716850]
  42. New Phytol. 2013 Feb;197(3):970-978 [PMID: 23206198]
  43. New Phytol. 2024 Apr;242(2):444-452 [PMID: 38396304]
  44. New Phytol. 2020 Jun;226(6):1550-1566 [PMID: 32064613]
  45. Science. 1983 Nov 4;222(4623):500-1 [PMID: 17746198]
  46. Ann Bot. 2012 Jan;109(1):65-75 [PMID: 22021815]
  47. Ann Bot. 2009 Oct;104(5):965-73 [PMID: 19633312]
  48. Nat Plants. 2016 May 27;2(6):16072 [PMID: 27255836]
  49. J Exp Bot. 2022 Sep 12;73(16):5625-5633 [PMID: 35727898]
  50. Nat Methods. 2012 Jul;9(7):671-5 [PMID: 22930834]
  51. Plant J. 2021 Oct;108(2):541-554 [PMID: 34403543]
  52. Annu Rev Plant Biol. 2006;57:361-81 [PMID: 16669766]
  53. Am J Bot. 2018 Feb;105(2):161-171 [PMID: 29570227]
  54. Curr Opin Plant Biol. 2010 Feb;13(1):66-74 [PMID: 19963429]
  55. Trends Ecol Evol. 2020 Dec;35(12):1110-1118 [PMID: 32928565]
  56. J Exp Bot. 2013 Jan;64(2):495-505 [PMID: 23264516]
  57. New Phytol. 2021 Jul;231(2):617-630 [PMID: 33893652]

Grants

  1. /ARC Centre of Excellence for Plant Success in Nature and Agriculture
  2. /Spanish Ministerio de Universidades
  3. USE-24438-N/NextGenerationEU

MeSH Term

Water
Polyploidy
Xylem
Plant Leaves
Plant Roots
Plant Stomata
Plant Transpiration

Chemicals

Water

Word Cloud

Created with Highcharts 10.0.0waterbroteriploidyallocationwhole-plantrelationsxylemDgctransportstressdifferencesrootsploidies12��efficiencyKr-spotentialVPDLtissueleduptakechangesPolyploidplantsoftendisplayfunctionaltraitvaluesdistinctdiploidsinfluencingtoleranceadaptivecapacityshapepolyploidsinteractenvironmentfactorcrucialevolutionarysuccessinvestigatedspeciescomplexDianthuslevelknowncorrelateavailabilitymodelsystemunderstandpossiblelinkquantifiedleaves4different2��4��6��examinedrelationshiphydraulicregulationstomatalconductanceresponsevaryingleaf-to-airvaporpressuredeficitsgradientincreasingcontrastingwater-usestrategieswithinHigherassociatedgreaterresultinghigherlowergradientsDespiteresponseslargelyconsistentacrosssignificantinvestmentwithoutproportionalincreaseleafareaappearedsuboptimalincurringhighcostsperunitHowevertrade-offalsoincreasedpotentiallyadvantageouswater-limitedconditionsOverallresultsindicatemultipleroundsgenomeduplicationcausesubstantiallikelyimpactingexposurefieldPolyploidydrivesmodifying

Similar Articles

Cited By