Supplementation with Rare Earth-Chitosan Chelate Improves Tibia Quality, Disease Resistance Capacity, and Performance in Nursery Pigs.

Shaobin Hao, Wenchen Sun, Panting Wei, Huadong Wu, Wei Lu, Yuyong He
Author Information
  1. Shaobin Hao: Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China.
  2. Wenchen Sun: Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China.
  3. Panting Wei: Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China.
  4. Huadong Wu: College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China.
  5. Wei Lu: Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China.
  6. Yuyong He: Jiangxi Province Key Laboratory of Animal Nutrition and Feed, Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China.

Abstract

The aim of this study was to investigate the effects on the tibia, liver, and gut, and on performance, when supplementing nursery Pigs with different levels of rare earth-chitosan chelate (RECC). A total of 80 piglets, weaned at 7.67 ± 0.09 kg, were randomly assigned to groups RECC0 (RECC, 0 mg/kg diet), RECC200 (RECC, 200 mg/kg diet), RECC400 (RECC, 400 mg/kg diet), and RECC600 (RECC, 600 mg/kg diet), with four replicates in each group and five Pigs per replicate during a 28 d experiment. Samples of the left hind tibia, serum, and feces were collected for analysis. The results indicated that, compared to Pigs from group RECC0, Pigs from group RECC200 presented with the following: a longer trabecular perimeter ( < 0.05), a larger trabecular area ( < 0.01), a higher trabecular number ( < 0.05), a smaller degree of trabecular separation ( < 0.01), and a lower number of osteoclasts ( < 0.01) in the tibia; higher abundances of beneficial fecal bacteria such as , , , , , , and ; higher ( < 0.01) serum levels of IgM, IgA, IgG, and IL-10; a lower ( < 0.01) serum concentration of TNF-α; a higher ( < 0.05) average daily gain and feed conversion ratio; and a lower ( < 0.01) incidence of diarrhea. The dietary addition of RECC contributes to improvements in tibia quality, gut health, and performance in nursery Pigs.

Keywords

References

  1. Front Vet Sci. 2021 Jun 22;8:681202 [PMID: 34239912]
  2. Microbiome. 2019 Jun 13;7(1):91 [PMID: 31196177]
  3. J Nutr. 2011 Mar;141(3):373-9 [PMID: 21248192]
  4. Bone. 2016 Feb;83:197-209 [PMID: 26608518]
  5. Front Pharmacol. 2024 Jun 19;15:1392123 [PMID: 38962302]
  6. Molecules. 2020 Dec 11;25(24): [PMID: 33322383]
  7. Front Immunol. 2020 Jun 09;11:906 [PMID: 32582143]
  8. Front Microbiol. 2022 May 06;13:877776 [PMID: 35602023]
  9. Antonie Van Leeuwenhoek. 2018 Sep;111(9):1673-1685 [PMID: 29497869]
  10. J Bone Miner Metab. 2014 Sep;32(5):484-93 [PMID: 24126694]
  11. BMC Microbiol. 2020 Feb 7;20(1):29 [PMID: 32028889]
  12. Stem Cell Res Ther. 2021 Feb 4;12(1):110 [PMID: 33541427]
  13. Biosci Biotechnol Biochem. 2023 Oct 25;87(11):1265-1273 [PMID: 37708033]
  14. J Biomed Mater Res A. 2008 Dec 1;87(3):618-23 [PMID: 18186071]
  15. Curr Osteoporos Rep. 2015 Apr;13(2):125-30 [PMID: 25616772]
  16. J Cell Physiol. 2014 Nov;229(11):1822-30 [PMID: 24677054]
  17. Anim Biosci. 2023 May;36(5):740-752 [PMID: 36397701]
  18. JBMR Plus. 2023 Aug 21;7(12):e10807 [PMID: 38130759]
  19. J Nutr Biochem. 2008 Sep;19(9):627-33 [PMID: 18280135]
  20. Mater Today Bio. 2024 Jan 24;25:100956 [PMID: 38322657]
  21. Int J Mol Sci. 2023 Feb 03;24(3): [PMID: 36769323]
  22. Gut Pathog. 2021 Aug 14;13(1):52 [PMID: 34391464]
  23. Poult Sci. 2020 Jan;99(1):95-100 [PMID: 32416857]
  24. Gut Microbes. 2020 Nov 9;12(1):1802866 [PMID: 32835590]
  25. Polymers (Basel). 2023 Mar 23;15(7): [PMID: 37050214]
  26. Biomed Res Int. 2019 Nov 5;2019:2365416 [PMID: 31781601]
  27. Science. 2013 Aug 2;341(6145):569-73 [PMID: 23828891]
  28. Sci Total Environ. 2019 Jul 1;672:1021-1032 [PMID: 30999219]
  29. Toxicol Pathol. 2014 Aug;42(6):957-69 [PMID: 24285673]
  30. J Med Microbiol. 2008 Dec;57(Pt 12):1569-1576 [PMID: 19018031]
  31. Microbiome. 2018 Nov 27;6(1):211 [PMID: 30482240]
  32. Fish Shellfish Immunol. 2021 Jan;108:53-62 [PMID: 33248252]
  33. PLoS One. 2024 Feb 29;19(2):e0298917 [PMID: 38422109]
  34. Cold Spring Harb Perspect Med. 2018 Apr 2;8(4): [PMID: 28847904]
  35. J Steroid Biochem Mol Biol. 2021 Jun;210:105857 [PMID: 33647520]
  36. Proc Natl Acad Sci U S A. 2016 Nov 22;113(47):E7554-E7563 [PMID: 27821775]
  37. J Dairy Sci. 2018 Mar;101(3):2016-2026 [PMID: 29398027]
  38. J Pharm Pharmacol. 2024 Mar 4;76(3):236-244 [PMID: 38183672]
  39. Anim Nutr. 2024 Feb 03;17:165-176 [PMID: 38779325]
  40. Front Microbiol. 2017 Feb 02;8:138 [PMID: 28210249]
  41. Bone. 2020 Jun;135:115317 [PMID: 32169602]
  42. Front Microbiol. 2016 Feb 17;7:185 [PMID: 26925050]
  43. World J Orthop. 2019 Mar 18;10(3):123-127 [PMID: 30918795]
  44. EPMA J. 2019 Oct 29;10(4):317-335 [PMID: 31832109]
  45. J Immunol. 2010 Jun 15;184(12):7238-46 [PMID: 20483756]
  46. Front Vet Sci. 2021 Jan 27;8:623899 [PMID: 33585620]
  47. Poult Sci. 2017 Oct 1;96(10):3755-3762 [PMID: 28938787]
  48. J Anim Breed Genet. 2021 Jul;138(4):491-507 [PMID: 33634901]
  49. Animal. 2024 Aug;18(8):101241 [PMID: 39096597]
  50. Nature. 2012 Sep 13;489(7415):242-9 [PMID: 22972297]
  51. Br J Nutr. 2023 Oct 28;130(8):1298-1307 [PMID: 36847163]
  52. Sci Rep. 2022 Apr 16;12(1):6383 [PMID: 35430599]
  53. Front Microbiol. 2023 Oct 23;14:1268935 [PMID: 37937216]
  54. Animals (Basel). 2019 Sep 28;9(10): [PMID: 31569383]
  55. Front Microbiol. 2021 Jul 26;12:712212 [PMID: 34381436]
  56. Animals (Basel). 2022 Jun 09;12(12): [PMID: 35739841]
  57. Gut Microbes. 2024 Jan-Dec;16(1):2295432 [PMID: 38174650]
  58. Vet Med Sci. 2023 Jul;9(4):1726-1736 [PMID: 37311971]
  59. J Clin Endocrinol Metab. 2025 Feb 18;110(3):e774-e782 [PMID: 38605279]
  60. J Evol Biol. 2010 Feb;23(2):372-85 [PMID: 20021550]
  61. J Anim Sci Biotechnol. 2022 Oct 6;13(1):113 [PMID: 36199127]
  62. Cell Metab. 2018 Apr 3;27(4):757-785 [PMID: 29617642]
  63. Clin Dev Immunol. 2013;2013:181849 [PMID: 23762085]
  64. Animals (Basel). 2024 Jul 27;14(15): [PMID: 39123717]
  65. Front Microbiol. 2019 Jul 09;10:1576 [PMID: 31354670]
  66. J Cell Physiol. 2016 Jan;231(1):142-51 [PMID: 26060084]
  67. J Clin Invest. 2016 Jun 1;126(6):2049-63 [PMID: 27111232]
  68. Int J Mol Sci. 2022 Nov 28;23(23): [PMID: 36499221]
  69. FASEB J. 2021 Jul;35(7):e21740 [PMID: 34143911]

Grants

  1. JXXTCX2016003-02/Jiangxi Modern Agricultural Research Collaborative Innovation Project

MeSH Term

Animals
Swine
Tibia
Chitosan
Dietary Supplements
Disease Resistance
Metals, Rare Earth
Animal Feed
Feces
Gastrointestinal Microbiome
Chelating Agents
Swine Diseases
Weaning

Chemicals

Chitosan
Metals, Rare Earth
Chelating Agents

Word Cloud

Created with Highcharts 10.0.00<RECC01pigstibiamg/kgdiettrabecularhighernurserygroupserum05lowerlivergutperformancelevelsrareRECC0RECC200numberfecalaimstudyinvestigateeffectssupplementingdifferentearth-chitosanchelatetotal80pigletsweaned767±09kgrandomlyassignedgroups200RECC400400RECC600600fourreplicatesfiveperreplicate28dexperimentSampleslefthindfecescollectedanalysisresultsindicatedcomparedpresentedfollowing:longerperimeterlargerareasmallerdegreeseparationosteoclastsabundancesbeneficialbacteriaIgMIgAIgGIL-10concentrationTNF-αaveragedailygainfeedconversionratioincidencediarrheadietaryadditioncontributesimprovementsqualityhealthSupplementationRareEarth-ChitosanChelateImprovesTibiaQualityDiseaseResistanceCapacityPerformanceNurseryPigsmicrobiotaimmuneinflammationpigearth–chitosanchelates

Similar Articles

Cited By

No available data.