Excipients for Cerium Dioxide Nanoparticle Stabilization in the Perspective of Biomedical Applications.

Svetlana A Titova, Maria P Kruglova, Victor A Stupin, Natalia E Manturova, Raghu Ram Achar, Gouri Deshpande, Vladimir A Parfenov, Ekaterina V Silina
Author Information
  1. Svetlana A Titova: I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia. ORCID
  2. Maria P Kruglova: I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia. ORCID
  3. Victor A Stupin: Pirogov Russian National Research Medical University, Moscow 117997, Russia. ORCID
  4. Natalia E Manturova: Pirogov Russian National Research Medical University, Moscow 117997, Russia.
  5. Raghu Ram Achar: JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India. ORCID
  6. Gouri Deshpande: Regional Institute of Education (RIE NCERT), Mysuru 570006, Karnataka, India. ORCID
  7. Vladimir A Parfenov: I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia.
  8. Ekaterina V Silina: I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia. ORCID

Abstract

Rare earth metal nanoparticles, some of which are already widely used in medicine, are of growing interest in the modern scientific community. One of the promising rare earth metals for biomedical applications is cerium, specifically its oxide form, which is characterized by a higher level of stability and safety. According to a number of studies, cerium dioxide has a wide range of biological effects (regenerative, antimicrobial, antioxidant, antitumor), which justifies the interest of its potential application in medicine. However, these effects and their intensity vary significantly across a number of studies. Since cerium dioxide was used in these studies, it can be assumed that not only is the chemical formula important, but also the physicochemical parameters of the nanoparticles obtained, and consequently the methods of their synthesis and modification with the use of excipients. In this review, we considered the possibilities of using a number of excipients (polyacrylate, polyvinylpyrrolidone, dextran, hyaluronic acid, chitosan, polycarboxylic acids, lecithin, phosphatidylcholine) in the context of preserving the biological effects of cerium dioxide and its physicochemical properties, as well as the degree of study of these combinations from the point of view of the prospect of creating drugs based on it for biomedical applications.

Keywords

References

  1. Int J Mol Sci. 2023 Mar 12;24(6): [PMID: 36982493]
  2. Immunol Rev. 2023 Aug;317(1):166-186 [PMID: 37144896]
  3. Adv Drug Deliv Rev. 2023 Sep;200:115004 [PMID: 37433372]
  4. Front Pharmacol. 2020 Jan 28;10:1599 [PMID: 32047435]
  5. Colloids Surf B Biointerfaces. 2022 Jun;214:112479 [PMID: 35349942]
  6. Int J Biol Macromol. 2024 Apr;264(Pt 2):130764 [PMID: 38462100]
  7. Int J Biol Macromol. 2020 Dec 15;165(Pt A):804-821 [PMID: 33011262]
  8. Molecules. 2024 Jun 15;29(12): [PMID: 38930918]
  9. Int J Biol Macromol. 2017 Dec;105(Pt 1):1161-1165 [PMID: 28751050]
  10. Carbohydr Polym. 2016 Oct 5;150:400-7 [PMID: 27312651]
  11. Surv Ophthalmol. 2021 May-Jun;66(3):423-440 [PMID: 32961209]
  12. ACS Appl Bio Mater. 2018 Aug 20;1(2):487-495 [PMID: 35016389]
  13. Int J Biol Macromol. 2023 Feb 28;229:329-343 [PMID: 36592852]
  14. Int J Pharm. 2024 Jun 25;659:124258 [PMID: 38782152]
  15. Int J Biol Macromol. 2023 Aug 15;246:125673 [PMID: 37406905]
  16. Int J Mol Sci. 2023 Sep 24;24(19): [PMID: 37833949]
  17. J Control Release. 2019 Dec 10;315:40-54 [PMID: 31669212]
  18. ACS Omega. 2019 Jan 02;4(1):104-113 [PMID: 31459316]
  19. Int J Biol Macromol. 2020 Mar 15;147:24-28 [PMID: 31904464]
  20. Analyst. 2020 Jun 7;145(11):3983-3995 [PMID: 32322872]
  21. Int J Biol Macromol. 2023 Nov 1;251:126349 [PMID: 37591426]
  22. Beilstein J Nanotechnol. 2023 Jun 27;14:762-780 [PMID: 37405151]
  23. Carbohydr Polym. 2024 Nov 1;343:122443 [PMID: 39174086]
  24. Chemistry. 2015 Sep 1;21(36):12646-56 [PMID: 26190768]
  25. Int J Nanomedicine. 2018 May 01;13:2631-2646 [PMID: 29750034]
  26. J Neuroimmunol. 2019 Jan 15;326:79-83 [PMID: 30544018]
  27. ACS Appl Bio Mater. 2020 Jan 21;3(1):186-196 [PMID: 35019435]
  28. Pharmaceutics. 2021 Sep 22;13(10): [PMID: 34683826]
  29. Acta Biomater. 2024 Jul 15;183:30-49 [PMID: 38849022]
  30. Biochim Biophys Acta Gen Subj. 2017 Feb;1861(2):386-395 [PMID: 27864151]
  31. Carbohydr Polym. 2021 Jun 1;261:117882 [PMID: 33766369]
  32. ACS Nano. 2013 Dec 23;7(12):10582-96 [PMID: 24266731]
  33. ACS Biomater Sci Eng. 2018 Jul 9;4(7):2453-2462 [PMID: 33435109]
  34. Mater Sci Eng C Mater Biol Appl. 2021 Jan;120:111663 [PMID: 33545829]
  35. J Control Release. 2023 Feb;354:465-488 [PMID: 36642250]
  36. Mater Today Bio. 2024 Sep 04;28:101229 [PMID: 39296355]
  37. Biosens Bioelectron. 2020 Mar 15;152:112027 [PMID: 32056738]
  38. Biomed Pharmacother. 2017 Jun;90:608-614 [PMID: 28411553]
  39. J Biomed Mater Res A. 2018 Nov;106(11):2795-2804 [PMID: 29752862]
  40. J Mater Sci Mater Med. 2023 Feb 21;34(2):9 [PMID: 36809518]
  41. Biomed Pharmacother. 2022 Dec;156:113868 [PMID: 36257210]
  42. Int J Biol Macromol. 2024 May;267(Pt 2):131650 [PMID: 38636756]
  43. J Control Release. 2023 Oct;362:446-467 [PMID: 37640109]
  44. Int J Nanomedicine. 2022 Dec 21;17:6561-6578 [PMID: 36578441]
  45. Int J Pharm. 2021 Sep 25;607:121005 [PMID: 34391855]
  46. Chembiochem. 2015 Jul 6;16(10):1474-82 [PMID: 25955220]
  47. Biochem Biophys Res Commun. 2006 Mar 31;342(1):86-91 [PMID: 16480682]
  48. J Biomed Mater Res B Appl Biomater. 2022 Dec;110(12):2751-2762 [PMID: 35796648]
  49. Int J Nanomedicine. 2013;8:3395-9 [PMID: 24039421]
  50. J Control Release. 2021 Jan 10;329:1262-1282 [PMID: 33129920]
  51. Adv Healthc Mater. 2024 Dec;13(32):e2401507 [PMID: 39073018]
  52. Microb Pathog. 2023 Nov;184:106360 [PMID: 37722491]
  53. Carbohydr Polym. 2023 Sep 15;316:121050 [PMID: 37321740]
  54. Acta Biomater. 2015 Apr;16:136-44 [PMID: 25620795]
  55. Chemosphere. 2023 Dec;345:140487 [PMID: 37875217]
  56. Adv Drug Deliv Rev. 2023 Dec;203:115119 [PMID: 37898338]
  57. Can J Ophthalmol. 2024 Oct;59(5):281-299 [PMID: 38369298]
  58. Int J Biol Macromol. 2017 Nov;104(Pt B):1746-1752 [PMID: 28359891]
  59. Reprod Biol Endocrinol. 2018 Mar 6;16(1):19 [PMID: 29510737]
  60. BMC Genomics. 2014 Aug 21;15:700 [PMID: 25145350]
  61. Micromachines (Basel). 2021 Aug 26;12(9): [PMID: 34577662]
  62. Int J Biol Macromol. 2021 Feb 15;170:728-750 [PMID: 33387543]
  63. Adv Drug Deliv Rev. 2023 Aug;199:114965 [PMID: 37315899]
  64. Int J Biol Macromol. 2024 Jul;273(Pt 2):132700 [PMID: 38879998]
  65. Carbohydr Polym. 2022 Nov 15;296:119940 [PMID: 36087989]
  66. Prog Retin Eye Res. 2010 Nov;29(6):596-609 [PMID: 20826225]
  67. Nanotoxicology. 2014 Nov;8(7):799-811 [PMID: 23914740]
  68. Maturitas. 2012 Sep;73(1):45-51 [PMID: 22261367]
  69. Molecules. 2020 Sep 25;25(19): [PMID: 32992833]
  70. Curr Ther Res Clin Exp. 2022 Apr 21;96:100672 [PMID: 35586563]
  71. Polymers (Basel). 2020 May 14;12(5): [PMID: 32423071]
  72. Toxicol Sci. 2012 May;127(1):256-68 [PMID: 22367688]
  73. Antibiotics (Basel). 2023 Jun 03;12(6): [PMID: 37370323]
  74. Toxicol In Vitro. 2013 Sep;27(6):2013-21 [PMID: 23872425]
  75. EPMA J. 2015 Jun 10;6(1):12 [PMID: 26097523]
  76. ACS Omega. 2024 Mar 22;9(13):15449-15462 [PMID: 38585053]
  77. Plant Physiol Biochem. 2024 Mar;208:108519 [PMID: 38490154]
  78. Mater Today Bio. 2024 Jun 08;27:101119 [PMID: 38966042]
  79. Int J Biol Macromol. 2024 Nov;279(Pt 2):134578 [PMID: 39122064]
  80. Pharm Res. 2017 May;34(5):890-917 [PMID: 28251425]
  81. Tissue Cell. 2020 Aug;65:101371 [PMID: 32746989]
  82. J Inorg Biochem. 2011 Feb;105(2):215-23 [PMID: 21194621]
  83. Nanomaterials (Basel). 2024 Feb 13;14(4): [PMID: 38392727]
  84. Nanomedicine (Lond). 2007 Jun;2(3):325-32 [PMID: 17716177]
  85. ACS Appl Mater Interfaces. 2021 Jan 13;13(1):233-244 [PMID: 33373178]
  86. Front Pharmacol. 2023 May 30;14:1188470 [PMID: 37324485]
  87. Int J Biol Macromol. 2024 Apr;264(Pt 2):130708 [PMID: 38460622]
  88. J Photochem Photobiol B. 2011 Jan 10;102(1):32-8 [PMID: 20926307]
  89. Mater Sci Eng C Mater Biol Appl. 2021 Jan;118:111416 [PMID: 33255018]
  90. Bioact Mater. 2023 Aug 27;31:368-394 [PMID: 37663621]
  91. Mater Today Bio. 2023 Dec 09;24:100907 [PMID: 38170028]
  92. ACS Nano. 2017 May 23;11(5):4669-4685 [PMID: 28463509]
  93. Int J Pharm. 2024 Mar 25;653:123880 [PMID: 38350498]
  94. Mater Today Bio. 2022 Dec 17;18:100524 [PMID: 36619202]
  95. Int J Biol Macromol. 2022 Dec 31;223(Pt A):1586-1603 [PMID: 36395945]
  96. Sci Rep. 2017 Apr 07;7:45859 [PMID: 28387344]
  97. Int J Pharm. 2024 Jun 10;658:124192 [PMID: 38703931]
  98. Int J Pharm. 2024 Nov 15;665:124701 [PMID: 39278291]
  99. Polymers (Basel). 2022 Apr 29;14(9): [PMID: 35566996]
  100. Int J Nanomedicine. 2023 Dec 30;19:1-17 [PMID: 38179219]
  101. Cancer Lett. 2015 Apr 1;359(1):9-19 [PMID: 25597786]
  102. Int J Biol Macromol. 2021 Aug 1;184:701-712 [PMID: 34157330]
  103. Nanoscale. 2017 Jul 27;9(29):10375-10387 [PMID: 28702620]
  104. BMC Biotechnol. 2021 Dec 7;21(1):68 [PMID: 34876083]
  105. Biomaterials. 2024 Sep;309:122617 [PMID: 38788457]
  106. Eur J Pharm Sci. 2023 Mar 1;182:106377 [PMID: 36634740]
  107. Langmuir. 2010 Sep 7;26(17):13831-8 [PMID: 20677736]
  108. Asian J Pharm Sci. 2023 Sep;18(5):100846 [PMID: 37881797]
  109. J Biomed Nanotechnol. 2014 Jul;10(7):1231-41 [PMID: 24804543]
  110. Polymers (Basel). 2021 Mar 17;13(6): [PMID: 33802821]
  111. Pharm Nanotechnol. 2022 Aug 29;: [PMID: 36043758]
  112. Langmuir. 2022 May 10;38(18):5502-5514 [PMID: 35470663]
  113. Antiviral Res. 2022 Aug;204:105362 [PMID: 35709898]
  114. Int J Biol Macromol. 2022 Oct 1;218:601-633 [PMID: 35902015]
  115. Mater Today Bio. 2023 Oct 01;23:100823 [PMID: 37928254]
  116. J Ocul Pharmacol Ther. 2020 Jul/Aug;36(6):376-383 [PMID: 31891528]
  117. Adv Sci (Weinh). 2023 Oct;10(30):e2302905 [PMID: 37635177]
  118. J Control Release. 2024 Jun;370:318-338 [PMID: 38692438]
  119. Int J Mol Sci. 2024 Apr 11;25(8): [PMID: 38673848]
  120. Biomed Pharmacother. 2016 Dec;84:1383-1392 [PMID: 27802899]
  121. Toxicol In Vitro. 2015 Oct;29(7):1319-31 [PMID: 26028148]
  122. Ophthalmol Ther. 2023 Oct;12(5):2641-2655 [PMID: 37486574]
  123. Int J Mol Sci. 2022 Feb 23;23(5): [PMID: 35269576]
  124. Toxicol In Vitro. 2013 Apr;27(3):1082-8 [PMID: 23416263]
  125. ACS Biomater Sci Eng. 2021 Jan 11;7(1):279-290 [PMID: 33320529]
  126. Acta Biomater. 2021 Aug;130:66-79 [PMID: 34098090]
  127. Biomater Sci. 2023 Jan 17;11(2):618-629 [PMID: 36484291]
  128. Drugs. 2015 May;75(8):859-77 [PMID: 25963327]
  129. J Control Release. 2019 Nov 28;314:48-61 [PMID: 31644935]
  130. Environ Res. 2024 Apr 1;246:118001 [PMID: 38145730]
  131. Neurotoxicology. 2012 Oct;33(5):1147-55 [PMID: 22750192]
  132. Chem Biol Interact. 2018 Aug 1;291:7-15 [PMID: 29879412]
  133. Curr Med Chem. 2006;13(21):2535-63 [PMID: 17017910]
  134. J Control Release. 2022 May;345:1-19 [PMID: 35227764]
  135. ACS Biomater Sci Eng. 2015 Nov 9;1(11):1096-1103 [PMID: 33429551]
  136. Mater Sci Eng C Mater Biol Appl. 2021 Jul;126:112145 [PMID: 34082956]
  137. Nanotechnology. 2010 Apr 9;21(14):145103 [PMID: 20234082]
  138. J Photochem Photobiol B. 2019 Feb;191:83-87 [PMID: 30594737]
  139. Adv Drug Deliv Rev. 2021 Sep;176:113884 [PMID: 34302897]
  140. Arch Pediatr. 2019 Oct;26(7):431-436 [PMID: 31611144]
  141. Nanomedicine. 2022 Sep;45:102586 [PMID: 35868519]
  142. Int J Biol Macromol. 2020 Jan 15;143:952-957 [PMID: 31743705]
  143. Tissue Cell. 2023 Jun;82:102087 [PMID: 37060747]
  144. J Pain Palliat Care Pharmacother. 2024 Jun;38(2):180-184 [PMID: 38718034]
  145. J Mater Chem B. 2022 Feb 16;10(7):1116-1127 [PMID: 35103745]
  146. Nanomedicine (Lond). 2017 Feb;12(4):403-416 [PMID: 28000542]
  147. Mater Sci Eng C Mater Biol Appl. 2020 Nov;116:111111 [PMID: 32806319]
  148. Int J Biol Macromol. 2024 Feb;258(Pt 2):129072 [PMID: 38163500]
  149. Adv Drug Deliv Rev. 2023 Feb;193:114670 [PMID: 36538990]
  150. Acta Biomater. 2021 Apr 1;124:219-232 [PMID: 33556605]
  151. ACS Nano. 2014 Oct 28;8(10):10328-42 [PMID: 25315655]
  152. Int J Biol Macromol. 2024 Jun;269(Pt 1):132086 [PMID: 38705321]
  153. Chem Biol Interact. 2015 May 5;232:85-93 [PMID: 25813935]
  154. Discov Nano. 2023 Aug 22;18(1):104 [PMID: 37606765]
  155. Biol Trace Elem Res. 2000 Jan;73(1):29-36 [PMID: 10949966]
  156. Int J Biol Macromol. 2023 Sep 1;248:125949 [PMID: 37494997]
  157. Saudi Pharm J. 2023 Oct;31(10):101761 [PMID: 37705880]
  158. Toxicol Appl Pharmacol. 2012 Apr 15;260(2):173-82 [PMID: 22373796]
  159. Acta Biomater. 2021 Apr 15;125:41-56 [PMID: 33601065]
  160. Int J Pharm. 2021 Jun 1;602:120591 [PMID: 33845152]
  161. Int J Biol Macromol. 2019 Jan;121:1154-1159 [PMID: 30342935]
  162. J Biomed Mater Res A. 2016 Jul;104(7):1736-46 [PMID: 26946213]
  163. Toxicol Sci. 2010 Aug;116(2):562-76 [PMID: 20457660]
  164. Biomed Pharmacother. 2017 Feb;86:343-353 [PMID: 28011382]
  165. J Control Release. 2021 Oct 10;338:164-189 [PMID: 34425166]
  166. Int J Biol Macromol. 2024 Jun;270(Pt 1):132048 [PMID: 38704062]
  167. Toxicol Lett. 2016 May 13;249:29-41 [PMID: 27021274]
  168. Int J Biol Macromol. 2023 Nov 1;251:126393 [PMID: 37595703]
  169. Int J Biol Macromol. 2023 May 1;236:123813 [PMID: 36858088]
  170. Life Sci. 2018 Nov 1;212:233-240 [PMID: 30304691]
  171. Comp Biochem Physiol C Toxicol Pharmacol. 2017 Oct;201:1-10 [PMID: 28888877]
  172. Ther Adv Neurol Disord. 2019 Jul 30;12:1756286419859725 [PMID: 31431809]
  173. Asian J Pharm Sci. 2020 Sep;15(5):558-575 [PMID: 33193860]

Grants

  1. 23-65-10040/Russian Science Foundation

MeSH Term

Cerium
Excipients
Humans
Metal Nanoparticles
Nanoparticles

Chemicals

Cerium
ceric oxide
Excipients

Word Cloud

Created with Highcharts 10.0.0ceriumearthnanoparticlesnumberstudiesdioxideeffectsexcipientsusedmedicineinterestraremetalsbiomedicalapplicationsoxidebiologicalphysicochemicaldextranchitosanacidsRaremetalalreadywidelygrowingmodernscientificcommunityOnepromisingspecificallyformcharacterizedhigherlevelstabilitysafetyAccordingwiderangeregenerativeantimicrobialantioxidantantitumorjustifiespotentialapplicationHoweverintensityvarysignificantlyacrossSincecanassumedchemicalformulaimportantalsoparametersobtainedconsequentlymethodssynthesismodificationusereviewconsideredpossibilitiesusingpolyacrylatepolyvinylpyrrolidonehyaluronicacidpolycarboxyliclecithinphosphatidylcholinecontextpreservingpropertieswelldegreestudycombinationspointviewprospectcreatingdrugsbasedExcipientsCeriumDioxideNanoparticleStabilizationPerspectiveBiomedicalApplicationsbiopolymerscarboxyliccollagenlanthanidesliposomesnanocerium

Similar Articles

Cited By