Study Models for Infection of the Female Reproductive Tract.

Jaehyeon Kim, Milena ��l��czkowska, Beatriz Nobre, Paul Wieringa
Author Information
  1. Jaehyeon Kim: Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands. ORCID
  2. Milena ��l��czkowska: Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands. ORCID
  3. Beatriz Nobre: Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands.
  4. Paul Wieringa: Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands. ORCID

Abstract

(Ct) is a leading cause of sexually transmitted infections globally, often resulting in inflammatory disorders, ectopic pregnancies, and infertility. Studying Ct's pathogenesis remains challenging due to its unique life cycle and host-specific interactions, which require diverse experimental models. Animal studies using mouse, guinea pig, pig, and non-human primate models provide valuable insights into immune responses, hormonal influences, and disease progression. However, they face limitations in terms of translational relevance due to physiological differences, as well as ethical concerns. Complementing these, in vitro systems, ranging from simple monolayer to advanced three-dimensional models, exhibit improved physiological relevance by replicating the human tissue architecture. This includes the detailed investigation of epithelial barrier disruptions, epithelium-stroma interactions, and immune responses at a cellular level. Nonetheless, in vitro models fall short in mimicking the intricate tissue structures found in vivo and, therefore, cannot faithfully replicate the host-pathogen interactions or infection dynamics observed in living organisms. This review presents a comprehensive overview of the in vivo and in vitro models employed over the past few decades to investigate Ct and its pathogenesis, addressing their strengths and limitations. Furthermore, we explore emerging technologies, including organ-on-chip and in silico models, as promising tools to overcome the existing challenges and refine our understanding of Ct infections.

Keywords

References

  1. Nat Commun. 2024 Aug 28;15(1):7411 [PMID: 39198453]
  2. Lancet Reg Health Eur. 2024 Aug 17;45:101027 [PMID: 39247903]
  3. Mol Biol Cell. 2023 Apr 1;34(4):ar25 [PMID: 36696175]
  4. In Vitro Cell Dev Biol. 1988 May;24(5):420-8 [PMID: 3372447]
  5. Clin Vaccine Immunol. 2017 Apr 5;24(4): [PMID: 28228394]
  6. Front Cell Infect Microbiol. 2021 Dec 17;11:790627 [PMID: 34976864]
  7. Lung Cancer. 2002 Aug;37(2):153-9 [PMID: 12140138]
  8. F1000Res. 2019 Jun 21;8: [PMID: 31249676]
  9. Infect Immun. 2013 Sep;81(9):3060-7 [PMID: 23836817]
  10. Tissue Eng Part B Rev. 2010 Aug;16(4):371-83 [PMID: 20121414]
  11. Pathog Dis. 2022 Aug 27;80(1): [PMID: 35927516]
  12. Science. 2015 Jun 19;348(6241):aaa8205 [PMID: 26089520]
  13. J Med Primatol. 1997 Jun;26(3):113-9 [PMID: 9379477]
  14. PLoS One. 2016 Jan 05;11(1):e0146663 [PMID: 26730599]
  15. Vet Immunol Immunopathol. 2015 Aug 15;166(3-4):95-107 [PMID: 26103808]
  16. Front Microbiol. 2024 Mar 28;15:1386343 [PMID: 38605708]
  17. Wiley Interdiscip Rev Dev Biol. 2020 May;9(3):e368 [PMID: 31746148]
  18. J Clin Pathol. 2004 Jun;57(6):657-9 [PMID: 15166277]
  19. Infect Immun. 1982 Nov;38(2):699-705 [PMID: 7141709]
  20. Biomaterials. 2007 Dec;28(34):5185-92 [PMID: 17697712]
  21. Vaccine. 2017 Jan 3;35(1):91-100 [PMID: 27894718]
  22. Pathog Dis. 2014 Oct;72(1):70-3 [PMID: 24585717]
  23. Curr Issues Mol Biol. 2023 Feb 23;45(3):1852-1859 [PMID: 36975489]
  24. Dis Model Mech. 2018 Aug 28;11(9): [PMID: 30154116]
  25. MedComm (2020). 2023 May 17;4(3):e274 [PMID: 37215622]
  26. Indian Dermatol Online J. 2014 Nov;5(Suppl 1):S1-5 [PMID: 25506555]
  27. Diagnostics (Basel). 2022 Jul 25;12(8): [PMID: 35892506]
  28. Comp Med. 2008 Aug;58(4):324-40 [PMID: 18724774]
  29. Spermatogenesis. 2012 Jan 1;2(1):1-5 [PMID: 22553484]
  30. Microbiol Rev. 1994 Dec;58(4):686-99 [PMID: 7854252]
  31. Infect Immun. 2000 Oct;68(10):6038-40 [PMID: 10992517]
  32. mSystems. 2023 Feb 23;8(1):e0068922 [PMID: 36511689]
  33. Cell Tissue Res. 1999 May;296(2):371-83 [PMID: 10382279]
  34. Antimicrob Agents Chemother. 2003 Feb;47(2):636-42 [PMID: 12543671]
  35. Hum Reprod. 2005 Apr;20(4):864-71 [PMID: 15665014]
  36. Infect Immun. 2017 Dec 19;86(1): [PMID: 29038126]
  37. Infect Immun. 2018 Oct 25;86(11): [PMID: 30181350]
  38. Nat Methods. 2016 Apr 28;13(5):405-14 [PMID: 27123816]
  39. Laryngoscope Investig Otolaryngol. 2017 Oct 31;2(6):398-409 [PMID: 29299515]
  40. Microb Ecol. 2024 Apr 8;87(1):56 [PMID: 38587642]
  41. Cell Microbiol. 2011 Aug;13(8):1183-99 [PMID: 21615662]
  42. Adv Drug Deliv Rev. 2021 Jun;173:461-478 [PMID: 33831478]
  43. Nat Commun. 2019 Mar 18;10(1):1194 [PMID: 30886143]
  44. Front Immunol. 2024 Jan 25;15:1289644 [PMID: 38333214]
  45. Cell Rep. 2019 Jan 29;26(5):1286-1302.e8 [PMID: 30699355]
  46. Life (Basel). 2022 Jul 15;12(7): [PMID: 35888153]
  47. BMC Vet Res. 2016 Sep 10;12(1):200 [PMID: 27614611]
  48. Cell Commun Signal. 2017 Nov 13;15(1):46 [PMID: 29132390]
  49. Front Reprod Health. 2022 Dec 06;4:992176 [PMID: 36560972]
  50. Front Cell Dev Biol. 2021 Nov 16;9:740574 [PMID: 34869324]
  51. Clin Infect Dis. 2004 Oct 1;39(7):996-1003 [PMID: 15472852]
  52. J Physiol. 2018 Dec;596(23):5535-5569 [PMID: 29633280]
  53. Mater Today Bio. 2022 Jul 01;16:100345 [PMID: 35847376]
  54. Infect Immun. 2010 Sep;78(9):3660-8 [PMID: 20547745]
  55. Infect Immun. 1973 Dec;8(6):925-30 [PMID: 4594119]
  56. Infect Immun. 2003 Nov;71(11):6148-54 [PMID: 14573630]
  57. ACS Biomater Sci Eng. 2018 Apr 9;4(4):1149-1161 [PMID: 33418653]
  58. Stem Cell Reports. 2022 Feb 8;17(2):187-210 [PMID: 35063127]
  59. Trends Microbiol. 2020 Nov;28(11):934-946 [PMID: 32674988]
  60. Infect Immun. 2001 Feb;69(2):968-76 [PMID: 11159992]
  61. Metabolomics. 2016 Apr;12(4): [PMID: 27642272]
  62. Cells. 2022 Mar 23;11(7): [PMID: 35406639]
  63. Nat Microbiol. 2020 Nov;5(11):1390-1402 [PMID: 32747796]
  64. Front Cell Dev Biol. 2021 Jul 22;9:711381 [PMID: 34395440]
  65. Front Bioeng Biotechnol. 2022 Mar 01;10:820930 [PMID: 35299632]
  66. Annu Rev Immunol. 2023 Apr 26;41:39-71 [PMID: 36525691]
  67. Dev Cell. 2022 Apr 11;57(7):914-929.e7 [PMID: 35320732]
  68. Front Microbiol. 2019 Jan 31;10:70 [PMID: 30766521]
  69. Nat Rev Microbiol. 2023 Jul;21(7):448-462 [PMID: 36788308]
  70. J Cancer. 2019 Jun 2;10(13):3028-3036 [PMID: 31281480]
  71. Am J Pathol. 1992 Apr;140(4):927-36 [PMID: 1562052]
  72. Front Immunol. 2022 Oct 06;13:991991 [PMID: 36275746]
  73. Clin Epigenetics. 2015 Mar 04;7:19 [PMID: 25763115]
  74. NPJ Vaccines. 2020 Jan 23;5(1):7 [PMID: 31993218]
  75. J Oral Microbiol. 2020 Jun 4;12(1):1773122 [PMID: 32922679]
  76. J Clin Microbiol. 2000 Jun;38(6):2292-6 [PMID: 10834991]
  77. Cancers (Basel). 2019 Aug 01;11(8): [PMID: 31374935]
  78. Infect Immun. 2009 Aug;77(8):3284-93 [PMID: 19470744]
  79. mBio. 2019 Aug 13;10(4): [PMID: 31409678]
  80. Physiology (Bethesda). 2017 Jul;32(4):266-277 [PMID: 28615311]
  81. BMC Vet Res. 2012 Mar 22;8:32 [PMID: 22439879]
  82. Life Sci Alliance. 2024 Jun 21;7(9): [PMID: 38906676]
  83. Front Cell Dev Biol. 2022 Oct 17;10:1031812 [PMID: 36325365]
  84. Infect Immun. 2017 Dec 19;86(1): [PMID: 29038127]
  85. Infect Dis Clin North Am. 2023 Jun;37(2):267-288 [PMID: 37005162]
  86. Pathog Dis. 2024 Feb 7;82: [PMID: 39043447]
  87. Front Cell Dev Biol. 2024 Aug 14;12:1301892 [PMID: 39206090]
  88. Cureus. 2024 Aug 6;16(8):e66316 [PMID: 39238673]
  89. Nat Rev Genet. 2003 Dec;4(12):969-80 [PMID: 14631357]
  90. Infect Immun. 2002 Jul;70(7):3413-8 [PMID: 12065480]
  91. Discov Med. 2010 Jun;9(49):504-11 [PMID: 20587339]
  92. Dis Model Mech. 2019 Jul 29;12(7): [PMID: 31383635]
  93. Front Bioeng Biotechnol. 2021 Jan 28;8:620962 [PMID: 33585419]
  94. Nat Rev Mol Cell Biol. 2000 Oct;1(1):72-6 [PMID: 11413492]
  95. Front Cell Infect Microbiol. 2020 Aug 14;10:416 [PMID: 32923409]
  96. Biomed Microdevices. 2021 Oct 16;23(4):55 [PMID: 34655329]
  97. Sci Rep. 2024 Jun 28;14(1):14892 [PMID: 38937503]
  98. PLoS Comput Biol. 2021 Sep 7;17(9):e1009365 [PMID: 34492008]
  99. Int J Mol Sci. 2021 Dec 07;22(24): [PMID: 34947977]
  100. Nat Metab. 2021 Oct;3(10):1290-1301 [PMID: 34663974]
  101. Am J Pathol. 2011 Jan;178(1):253-60 [PMID: 21224062]
  102. Microorganisms. 2024 Jul 28;12(8): [PMID: 39203386]
  103. AIDS Res Ther. 2017 Sep 12;14(1):39 [PMID: 28893284]
  104. PLoS Pathog. 2024 Jun 17;20(6):e1012303 [PMID: 38885287]
  105. Vaccines (Basel). 2020 Jul 02;8(3): [PMID: 32630694]
  106. Infect Immun. 2020 Aug 19;88(9): [PMID: 32601108]
  107. Lab Chip. 2018 Jun 12;18(12):1671-1689 [PMID: 29845145]
  108. Cell Death Discov. 2018 Oct 10;4:47 [PMID: 30323952]
  109. Dis Mon. 2016 Aug;62(8):269-73 [PMID: 27091634]
  110. J Theor Biol. 2020 Jul 21;497:110291 [PMID: 32315672]
  111. Methods Mol Biol. 2023;2644:349-359 [PMID: 37142933]
  112. Hum Reprod Update. 2022 Nov 2;28(6):798-837 [PMID: 35652272]
  113. Cytotechnology. 2008 Jan;56(1):49-56 [PMID: 19002841]
  114. Nat Rev Genet. 2022 Aug;23(8):467-491 [PMID: 35338360]
  115. Infect Immun. 2018 Apr 23;86(5): [PMID: 29463617]
  116. Immunol Cell Biol. 2017 May;95(5):454-460 [PMID: 27990018]
  117. J Cell Sci. 2021 Mar 8;134(5): [PMID: 33468625]
  118. Front Genet. 2021 Jul 05;12:680342 [PMID: 34290739]
  119. J R Soc Interface. 2014 Jul 6;11(96): [PMID: 24829281]
  120. Vet Res. 2015 Sep 28;46:116 [PMID: 26411309]
  121. Front Cell Infect Microbiol. 2017 Feb 03;7:18 [PMID: 28217555]
  122. Adv Sci (Weinh). 2022 Jul;9(20):e2200543 [PMID: 35567354]
  123. Annu Rev Med. 2022 Jan 27;73:167-182 [PMID: 34644153]
  124. Vaccine. 2011 Aug 11;29(35):5994-6001 [PMID: 21718744]
  125. J Biol Chem. 2022 Sep;298(9):102338 [PMID: 35931114]
  126. Infect Dis Obstet Gynecol. 2011;2011:675360 [PMID: 21869858]
  127. Indian J Med Microbiol. 2004 Jul-Sep;22(3):169-71 [PMID: 17642725]
  128. Front Cell Infect Microbiol. 2017 Oct 10;7:438 [PMID: 29067282]
  129. J Biomed Biotechnol. 2011;2011:852419 [PMID: 22007147]
  130. Front Cell Infect Microbiol. 2023 Oct 18;13:1281823 [PMID: 37920447]
  131. Cell Host Microbe. 2022 Dec 14;30(12):1685-1700.e10 [PMID: 36395759]
  132. Int J Mol Sci. 2023 Feb 10;24(4): [PMID: 36835003]
  133. Aging Cell. 2021 Apr;20(4):e13338 [PMID: 33711211]
  134. Infect Genet Evol. 2018 Dec;66:346-360 [PMID: 29175001]
  135. Microbes Infect. 2017 Jun;19(6):334-342 [PMID: 28189786]
  136. Clin Microbiol Rev. 2014 Apr;27(2):346-70 [PMID: 24696438]
  137. Front Physiol. 2018 Oct 09;9:1417 [PMID: 30356887]
  138. Curr Clin Microbiol Rep. 2019 Jun;6(2):67-75 [PMID: 31890462]
  139. J Immunol. 2012 Sep 1;189(5):2441-9 [PMID: 22855710]
  140. PLoS One. 2021 Apr 22;16(4):e0250317 [PMID: 33886668]
  141. EBioMedicine. 2018 Mar;29:159-165 [PMID: 29500127]
  142. BMC Genomics. 2009 Dec 29;10:634 [PMID: 20040079]
  143. J Proteomics. 2014 Aug 28;108:99-109 [PMID: 24862987]
  144. Mol Cell Proteomics. 2009 Mar;8(3):443-50 [PMID: 18952599]
  145. Int J Mol Sci. 2022 Feb 28;23(5): [PMID: 35269803]
  146. Trends Microbiol. 2018 Jul;26(7):611-623 [PMID: 29289422]
  147. Infect Immun. 2015 Oct;83(10):4056-67 [PMID: 26216426]
  148. Reprod Biol Endocrinol. 2008 Oct 01;6:46 [PMID: 18828896]
  149. N Engl J Med. 2017 Feb 23;376(8):765-773 [PMID: 28225683]
  150. Gut Microbes. 2023 Jan-Dec;15(1):2158034 [PMID: 36576310]
  151. Int J Mol Sci. 2023 Aug 12;24(16): [PMID: 37628897]
  152. Curr Opin Microbiol. 2024 Feb;77:102416 [PMID: 38103413]
  153. Front Immunol. 2020 Oct 26;11:555305 [PMID: 33193323]
  154. Microorganisms. 2024 Feb 29;12(3): [PMID: 38543546]
  155. Nat Commun. 2022 Feb 24;13(1):1030 [PMID: 35210413]
  156. BMC Infect Dis. 2024 Apr 15;24(1):405 [PMID: 38622501]
  157. Infect Immun. 2014 Aug;82(8):3341-9 [PMID: 24866804]
  158. Front Microbiol. 2024 Aug 06;15:1449844 [PMID: 39165576]
  159. Sex Transm Dis. 2017 Sep;44(9):551-556 [PMID: 28809773]
  160. Infect Immun. 1998 Mar;66(3):893-8 [PMID: 9488372]
  161. Pathog Dis. 2021 Mar 31;79(4): [PMID: 33538819]
  162. Nat Rev Methods Primers. 2022;2: [PMID: 37325195]
  163. J Infect Dis. 2013 Aug 15;208(4):707-9 [PMID: 23661799]
  164. Pathog Dis. 2015 Jun;73(4): [PMID: 25761873]
  165. Front Immunol. 2022 Nov 23;13:1057375 [PMID: 36505459]
  166. Hum Reprod. 2009 Mar;24(3):679-86 [PMID: 19095674]
  167. J Biol Eng. 2018 Sep 12;12:18 [PMID: 30214484]
  168. Biol Reprod. 2020 May 26;102(6):1160-1169 [PMID: 32129461]
  169. Lab Chip. 2017 Feb 28;17(5):905-916 [PMID: 28194463]
  170. Mol Cancer Res. 2016 Jan;14(1):3-13 [PMID: 26248648]

Grants

  1. 101043014/European Research Council

Word Cloud

Created with Highcharts 10.0.0modelsCtinfectionsinteractionsvitropathogenesisduepigimmuneresponseslimitationsrelevancephysiologicalsystemstissuevivoinfectionleadingcausesexuallytransmittedgloballyoftenresultinginflammatorydisordersectopicpregnanciesinfertilityStudyingCt'sremainschallenginguniquelifecyclehost-specificrequirediverseexperimentalAnimalstudiesusingmouseguineanon-humanprimateprovidevaluableinsightshormonalinfluencesdiseaseprogressionHoweverfacetermstranslationaldifferenceswellethicalconcernsComplementingrangingsimplemonolayeradvancedthree-dimensionalexhibitimprovedreplicatinghumanarchitectureincludesdetailedinvestigationepithelialbarrierdisruptionsepithelium-stromacellularlevelNonethelessfallshortmimickingintricatestructuresfoundthereforefaithfullyreplicatehost-pathogendynamicsobservedlivingorganismsreviewpresentscomprehensiveoverviewemployedpastdecadesinvestigateaddressingstrengthsFurthermoreexploreemergingtechnologiesincludingorgan-on-chipsilicopromisingtoolsovercomeexistingchallengesrefineunderstandingStudyModelsInfectionFemaleReproductiveTractChlamydiatrachomatischlamydiahost���pathogeninteractionmodelstudychlamydiaechlamydia-like

Similar Articles

Cited By