: Phytochemistry, Antimicrobial Potential with Antibiotic Enhancement, and Toxicity Insights.

Gagan Tiwana, Ian Edwin Cock, Matthew James Cheesman
Author Information
  1. Gagan Tiwana: School of Pharmacy and Medical Sciences, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia.
  2. Ian Edwin Cock: School of Environment and Science, Nathan Campus, Griffith University, Brisbane 4111, Australia. ORCID
  3. Matthew James Cheesman: School of Pharmacy and Medical Sciences, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia. ORCID

Abstract

Linn. (commonly known as Amla or Indian Gooseberry) is commonly used in Ayurvedic medicine to treat respiratory infections, skin disorders, and gastrointestinal issues. The fruit contains an abundance of polyphenols, which contribute to its strong antioxidant properties. The antibacterial activity of fruit extracts derived from against , , and was determined along with the antibiotic-resistant variants extended-spectrum ��-lactamase (ESBL) , methicillin-resistant (MRSA), and ESBL . Disc diffusion and broth dilution assays were conducted to assess the activity of aqueous, methanolic, and ethyl acetate extracts, with large zones of inhibition of up to 15 mm on agar observed for and MRSA. Minimum inhibitory concentration (MIC) values ranging from 158 to 1725 ��g/mL were calculated. The aqueous and methanolic extracts of were less active against , ESBL , , and , with the only noteworthy MIC (633 ��g/mL) observed for the aqueous extract against . Interestingly, a lack of inhibition was observed on agar for any of the extracts against these bacteria. Liquid chromatography-mass spectrometry (LC-MS) analysis identified several notable flavonoids, phenolic acids, terpenoids, and tannins. Notably, bioassays indicated that all extracts were nontoxic. The antibacterial activity and absence of toxicity in extracts suggest their potential as candidates for antibiotic development, highlighting the need for further mechanistic and phytochemical investigations.

Keywords

References

  1. Naunyn Schmiedebergs Arch Pharmacol. 2024 Feb;397(2):857-871 [PMID: 37522914]
  2. J Ayurveda Integr Med. 2017 Oct - Dec;8(4):266-275 [PMID: 28869082]
  3. Lancet. 2022 Feb 12;399(10325):629-655 [PMID: 35065702]
  4. Chin J Integr Med. 2014 Dec 9;: [PMID: 25491539]
  5. Pharmacogn Rev. 2017 Jul-Sep;11(22):57-72 [PMID: 28989242]
  6. Lett Appl Microbiol. 2021 Mar;72(3):332-340 [PMID: 33099798]
  7. J Clin Microbiol. 2014 Dec;52(12):4124-8 [PMID: 24920779]
  8. Int J Mol Sci. 2023 Jan 19;24(3): [PMID: 36768308]
  9. Nat Prod Res. 2014;28(16):1280-3 [PMID: 24620744]
  10. Int J Antimicrob Agents. 2000 Nov;16 Suppl 1:S3-10 [PMID: 11137402]
  11. Nat Rev Chem. 2021;5(10):726-749 [PMID: 34426795]
  12. Plants (Basel). 2017 Sep 22;6(4): [PMID: 28937585]
  13. PLoS One. 2013 Dec 09;8(12):e82814 [PMID: 24349368]
  14. Chem Commun (Camb). 2021 Jun 8;57(46):5654-5657 [PMID: 33972964]
  15. Microbiol Spectr. 2022 Dec 21;10(6):e0226522 [PMID: 36314964]
  16. Clin Microbiol Infect. 2020 Jul;26(7):871-879 [PMID: 31811919]
  17. J Nat Prod. 2020 Apr 24;83(4):985-995 [PMID: 32141299]
  18. Curr Protoc Microbiol. 2013 Feb;Chapter 9:Unit 9C.2 [PMID: 23408135]
  19. Microorganisms. 2021 Sep 27;9(10): [PMID: 34683362]
  20. J Clin Med. 2019 Dec 31;9(1): [PMID: 31906141]
  21. Nat Prod Res. 2007 Jul 20;21(9):775-81 [PMID: 17763100]
  22. PLoS One. 2017 May 31;12(5):e0178712 [PMID: 28562631]
  23. J Antimicrob Chemother. 2007 Dec;60(6):1206-15 [PMID: 17878146]
  24. Biofilm. 2022 Aug 17;4:100081 [PMID: 36060119]
  25. Nat Prod Bioprospect. 2021 Jun;11(3):345-355 [PMID: 33141306]
  26. Antibiotics (Basel). 2024 Jul 16;13(7): [PMID: 39061336]
  27. J Antimicrob Chemother. 2008 Jun;61(6):1295-301 [PMID: 18339637]
  28. J Agric Food Chem. 2014 Jan 22;62(3):529-41 [PMID: 24369850]
  29. Antibiotics (Basel). 2021 Aug 26;10(9): [PMID: 34572626]
  30. Antibiotics (Basel). 2024 Aug 09;13(8): [PMID: 39200046]
  31. Antibiotics (Basel). 2024 Jun 09;13(6): [PMID: 38927202]
  32. Drug Dev Ind Pharm. 2015 Jun;41(6):875-87 [PMID: 25342479]
  33. Plant Foods Hum Nutr. 2024 Sep;79(3):656-661 [PMID: 38951374]
  34. Int J Mol Sci. 2023 May 22;24(10): [PMID: 37240435]
  35. Indian J Med Res. 2019 Feb;149(2):129-145 [PMID: 31219077]
  36. BMC Complement Altern Med. 2019 May 22;19(1):106 [PMID: 31113428]
  37. J Ethnopharmacol. 2020 Oct 5;260:112937 [PMID: 32464314]
  38. Indian J Microbiol. 2017 Dec;57(4):503-506 [PMID: 29151653]
  39. Microb Pathog. 2016 Oct;99:56-61 [PMID: 27497894]
  40. J Toxicol Environ Health A. 2009;72(24):1567-75 [PMID: 20077231]

Word Cloud

Created with Highcharts 10.0.0extractsactivityESBLaqueousobservedcommonlyfruitantibacterialMRSAmethanolicinhibitionagarMIC��g/mLphytochemicalLinnknownAmlaIndianGooseberryusedAyurvedicmedicinetreatrespiratoryinfectionsskindisordersgastrointestinalissuescontainsabundancepolyphenolscontributestrongantioxidantpropertiesderiveddeterminedalongantibiotic-resistantvariantsextended-spectrum��-lactamasemethicillin-resistantDiscdiffusionbrothdilutionassaysconductedassessethylacetatelargezones15mmMinimuminhibitoryconcentrationvaluesranging1581725calculatedlessactivenoteworthy633extractInterestinglylackbacteriaLiquidchromatography-massspectrometryLC-MSanalysisidentifiedseveralnotableflavonoidsphenolicacidsterpenoidstanninsNotablybioassaysindicatednontoxicabsencetoxicitysuggestpotentialcandidatesantibioticdevelopmenthighlightingneedmechanisticinvestigations:PhytochemistryAntimicrobialPotentialAntibioticEnhancementToxicityInsightsantimicrobialresistancecombinatorialinteractionsnaturalantibioticsprofilingplant-basedantimicrobialssecondarymetabolites

Similar Articles

Cited By