Nitrogen Fertilization Alleviates Microplastic Effects on Soil Protist Communities and Rape ( L.) Growth.

Ge Wang, Maolu Wei, Qian Sun, Ting Shen, Miaomiao Xie, Dongyan Liu
Author Information
  1. Ge Wang: Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Ministry of Education, Chengdu 610101, China.
  2. Maolu Wei: Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Ministry of Education, Chengdu 610101, China.
  3. Qian Sun: Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Ministry of Education, Chengdu 610101, China.
  4. Ting Shen: Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Ministry of Education, Chengdu 610101, China.
  5. Miaomiao Xie: Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Ministry of Education, Chengdu 610101, China.
  6. Dongyan Liu: Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Ministry of Education, Chengdu 610101, China.

Abstract

Agricultural plastic mulch enhances crop yields but leads to persistent microplastic contamination in soils. Concurrently, nitrogen (N) fertilization and atmospheric deposition profoundly reshape microbial ecosystems. This study examined the individual and interactive effects of polyethylene microplastics (PE, 1% /) and nitrogen addition (N, 180 kg ha yr) on soil protist communities and rape ( L.) productivity. High-throughput sequencing and soil-plant trait analyses revealed that PE alone reduced the soil water retention and the rape biomass while elevating the soil total carbon content, C/N ratios, and NH₄⁺-N/NO₃-N levels. Conversely, N addition significantly boosted the rape biomass and the chlorophyll content, likely through enhanced nutrient availability. Strikingly, the combined PE_N treatment exhibited antagonistic interactions; protist diversity and functional group composition stabilized to resemble the control conditions, and the rape biomass under the PE_N treatment showed no difference from the CK (with basal fertilizer only), despite significant reductions under the PE treatment alone. Soil nutrient dynamics (e.g., the SWC and the C/N ratio) and the protist community structure collectively explained 96% of the biomass variation. These findings highlight the potential of nitrogen fertilization to mitigate microplastic-induced soil degradation, offering a pragmatic strategy to stabilize crop productivity in contaminated agricultural systems. This study underscores the importance of balancing nutrient management with pollution control to sustain soil health under global microplastic and nitrogen deposition pressures.

Keywords

References

  1. Environ Int. 2024 Mar;185:108508 [PMID: 38377723]
  2. J Hazard Mater. 2024 May 15;470:134176 [PMID: 38569347]
  3. J Hazard Mater. 2020 Apr 5;387:121711 [PMID: 31806445]
  4. Environ Microbiol. 2016 May;18(5):1604-19 [PMID: 26914587]
  5. ISME J. 2023 Dec;17(12):2160-2168 [PMID: 37773438]
  6. Environ Int. 2021 Jan;146:106262 [PMID: 33221595]
  7. Mycorrhiza. 2018 Apr;28(3):269-283 [PMID: 29455336]
  8. Environ Pollut. 2018 Oct;241:1128-1131 [PMID: 30029321]
  9. PLoS Biol. 2021 Mar 30;19(3):e3001130 [PMID: 33784293]
  10. Sci Total Environ. 2023 Jun 15;877:162885 [PMID: 36934915]
  11. Ying Yong Sheng Tai Xue Bao. 2019 Jul;30(7):2345-2351 [PMID: 31418238]
  12. J Hazard Mater. 2023 Feb 5;443(Pt B):130384 [PMID: 36444071]
  13. Environ Sci Technol. 2024 May 14;58(19):8464-8479 [PMID: 38701232]
  14. Microb Ecol. 2018 Apr;75(3):751-760 [PMID: 28890994]
  15. Sci Total Environ. 2021 Dec 1;798:149338 [PMID: 34375233]
  16. New Phytol. 2019 Aug;223(3):1066-1070 [PMID: 30883812]
  17. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  18. Pak J Biol Sci. 2019 Jan;22(6):291-298 [PMID: 31930852]
  19. Microb Ecol. 2023 Nov;86(4):2293-2304 [PMID: 37191674]
  20. Microbiol Res. 2024 Sep;286:127829 [PMID: 39018940]
  21. J Hazard Mater. 2022 Aug 5;435:129065 [PMID: 35650746]
  22. Environ Microbiol Rep. 2023 Aug;15(4):298-307 [PMID: 36992636]
  23. J Environ Manage. 2022 Sep 1;317:115473 [PMID: 35751272]
  24. Environ Pollut. 2021 Jan 01;268(Pt B):115870 [PMID: 33120154]
  25. J Hazard Mater. 2024 Jan 5;461:132705 [PMID: 37813034]
  26. Sci Total Environ. 2019 Mar 1;654:576-582 [PMID: 30447596]
  27. Sci Total Environ. 2018 Aug 15;633:776-784 [PMID: 29602116]
  28. Annu Rev Plant Biol. 2023 May 22;74:569-607 [PMID: 36854473]
  29. Ecotoxicol Environ Saf. 2021 Apr 14;216:112180 [PMID: 33865187]
  30. iScience. 2025 Jan 21;28(2):111879 [PMID: 39995877]
  31. Sci Total Environ. 2024 Jan 1;906:167645 [PMID: 37806593]
  32. J Hazard Mater. 2023 Jun 5;451:131152 [PMID: 36934700]
  33. Sci Total Environ. 2023 Mar 10;863:160986 [PMID: 36528948]
  34. Environ Pollut. 2022 May 1;300:118945 [PMID: 35122919]
  35. Plants (Basel). 2021 Dec 01;10(12): [PMID: 34961111]
  36. Trends Plant Sci. 2019 Feb;24(2):165-176 [PMID: 30446306]
  37. ISME J. 2021 Feb;15(2):618-621 [PMID: 33005005]
  38. Microbiome. 2019 Feb 27;7(1):33 [PMID: 30813951]
  39. FEMS Microbiol Ecol. 2024 May 14;100(6): [PMID: 38697936]
  40. Sci Total Environ. 2022 May 15;821:153511 [PMID: 35101494]
  41. Chemosphere. 2023 Jan;311(Pt 1):137023 [PMID: 36330984]
  42. FEMS Microbiol Rev. 2018 May 1;42(3):293-323 [PMID: 29447350]
  43. ISME Commun. 2021 Nov 25;1(1):69 [PMID: 36759732]
  44. Microbiome. 2021 Mar 20;9(1):64 [PMID: 33743825]
  45. Environ Sci Technol. 2019 May 21;53(10):6044-6052 [PMID: 31021077]
  46. Nat Rev Earth Environ. 2020 Oct;1(10):544-553 [PMID: 33015639]
  47. Front Plant Sci. 2022 Mar 02;13:829381 [PMID: 35310625]
  48. Chemosphere. 2021 Aug;276:130178 [PMID: 33714157]
  49. Environ Microbiol. 2023 Feb;25(2):229-240 [PMID: 36482161]
  50. Environ Pollut. 2024 Nov 1;360:124630 [PMID: 39079655]
  51. Front Plant Sci. 2016 Sep 30;7:1496 [PMID: 27746809]
  52. Chemosphere. 2023 Mar;318:137946 [PMID: 36708782]
  53. Glob Chang Biol. 2023 Jan;29(1):231-242 [PMID: 36226978]
  54. Sci Total Environ. 2023 Oct 1;893:164845 [PMID: 37329907]
  55. Environ Sci Pollut Res Int. 2024 Feb;31(8):11766-11780 [PMID: 38224439]
  56. ISME J. 2022 Aug;16(8):1932-1943 [PMID: 35461357]
  57. Environ Microbiol. 2022 Apr;24(4):1689-1702 [PMID: 34347350]
  58. Appl Environ Microbiol. 2023 Mar 29;89(3):e0181922 [PMID: 36877040]
  59. Sci Total Environ. 2024 May 20;926:172073 [PMID: 38554959]
  60. Nat Biotechnol. 2019 Aug;37(8):852-857 [PMID: 31341288]
  61. Sci Rep. 2015 Nov 25;5:16931 [PMID: 26603894]
  62. PeerJ. 2024 Dec 5;12:e18642 [PMID: 39650556]

Grants

  1. pt31800425/Talent Program by Sichuan Normal University

Word Cloud

Created with Highcharts 10.0.0soilnitrogenrapeprotistbiomassNPEadditionnutrienttreatmentcropmicroplasticfertilizationdepositionstudymicroplasticsLproductivityalonecontentC/NPE_NcontrolSoildegradationAgriculturalplasticmulchenhancesyieldsleadspersistentcontaminationsoilsConcurrentlyatmosphericprofoundlyreshapemicrobialecosystemsexaminedindividualinteractiveeffectspolyethylene1%/180kghayrcommunitiesHigh-throughputsequencingsoil-planttraitanalysesrevealedreducedwaterretentionelevatingtotalcarbonratiosNH₄⁺-N/NO₃-NlevelsConverselysignificantlyboostedchlorophylllikelyenhancedavailabilityStrikinglycombinedexhibitedantagonisticinteractionsdiversityfunctionalgroupcompositionstabilizedresembleconditionsshoweddifferenceCKbasalfertilizerdespitesignificantreductionsdynamicsegSWCratiocommunitystructurecollectivelyexplained96%variationfindingshighlightpotentialmitigatemicroplastic-inducedofferingpragmaticstrategystabilizecontaminatedagriculturalsystemsunderscoresimportancebalancingmanagementpollutionsustainhealthglobalpressuresNitrogenFertilizationAlleviatesMicroplasticEffectsProtistCommunitiesRapeGrowth

Similar Articles

Cited By