Cryo-EM Structures and AlphaFold3 Models of Histamine Receptors Reveal Diverse Ligand Binding and G Protein Bias.

Anqi Chen, Chenxi Su, Zisu Zhang, Haitao Zhang
Author Information
  1. Anqi Chen: The Second Affiliated Hospital of Zhejiang University School of Medicine, Research Center for Clinical Pharmacy, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
  2. Chenxi Su: The Second Affiliated Hospital of Zhejiang University School of Medicine, Research Center for Clinical Pharmacy, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
  3. Zisu Zhang: The Second Affiliated Hospital of Zhejiang University School of Medicine, Research Center for Clinical Pharmacy, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
  4. Haitao Zhang: The Second Affiliated Hospital of Zhejiang University School of Medicine, Research Center for Clinical Pharmacy, Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, State Key Laboratory of Advanced Drug Delivery and Release Systems, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China. ORCID

Abstract

The four subtypes of G protein-coupled receptors (GPCRs) regulated by histamine play critical roles in various physiological and pathological processes, such as allergy, gastric acid secretion, cognitive and sleep disorders, and inflammation. Previous experimental structures of histamine receptors (HRs) with agonists and antagonists exhibited multiple conformations for the ligands and G protein binding. However, the structural basis for HR regulation and signaling remains elusive. We determined the cryo-electron microscopy (cryo-EM) structure of the H4R-histamine-Gi complex at 2.9 Å resolution, and predicted the models for all four HRs in the ligand-free apo and G protein subtype binding states using AlphaFold3 (AF3). By comparing our H4R structure with the experimental HR structures and the computational AF3 models, we elucidated the distinct histamine binding modes and G protein interfaces, and proposed the essential roles of Y and Q in receptor activation and the intracellular loop 2 (ICL2) in G protein bias. Our findings deciphered the molecular mechanisms underlying the regulation of different HRs, from the extracellular ligand-binding pockets and transmembrane motifs to the intracellular G protein coupling interfaces. These insights are expected to facilitate selective drug discovery targeting HRs for diverse therapeutic purposes.

Keywords

References

  1. Adv Sci (Weinh). 2024 Jun;11(23):e2310120 [PMID: 38647423]
  2. Brain Behav Immun. 2019 Feb;76:61-73 [PMID: 30408497]
  3. Int J Mol Sci. 2022 Jan 26;23(3): [PMID: 35163302]
  4. Biomolecules. 2022 Apr 24;12(5): [PMID: 35625556]
  5. Bioinformatics. 2010 Apr 1;26(7):889-95 [PMID: 20164152]
  6. Nat Commun. 2023 Jun 6;14(1):3271 [PMID: 37277332]
  7. Cell Discov. 2022 May 24;8(1):50 [PMID: 35610220]
  8. Nature. 2011 Jun 22;475(7354):65-70 [PMID: 21697825]
  9. Cell. 2021 Feb 18;184(4):931-942.e18 [PMID: 33571431]
  10. Cell Res. 2023 Aug;33(8):604-616 [PMID: 37221270]
  11. Science. 2019 May 10;364(6440):552-557 [PMID: 31073061]
  12. Nat Commun. 2022 Sep 15;13(1):5417 [PMID: 36109516]
  13. Int J Mol Sci. 2023 Oct 17;24(20): [PMID: 37894952]
  14. Br J Cancer. 2020 Feb;122(3):348-360 [PMID: 31748740]
  15. Nat Commun. 2024 Jan 2;15(1):84 [PMID: 38167898]
  16. Nat Commun. 2020 Aug 17;11(1):4121 [PMID: 32807782]
  17. Pharmacol Rev. 2015;67(1):198-213 [PMID: 25527701]
  18. Nat Commun. 2021 Apr 7;12(1):2086 [PMID: 33828102]
  19. Nat Commun. 2023 Oct 20;14(1):6538 [PMID: 37863901]
  20. Allergy. 2021 Apr;76(4):1261-1264 [PMID: 32975872]
  21. Br J Pharmacol. 2020 Feb;177(3):469-489 [PMID: 30341770]
  22. J Struct Biol. 2016 Jan;193(1):1-12 [PMID: 26592709]
  23. Nat Methods. 2017 Mar;14(3):290-296 [PMID: 28165473]
  24. J Med Chem. 2019 Apr 25;62(8):3784-3839 [PMID: 30351004]
  25. Proc Natl Acad Sci U S A. 2023 Feb 7;120(6):e2216230120 [PMID: 36724251]
  26. Pain. 2015 Dec;156(12):2492-2504 [PMID: 26270581]
  27. Acta Pharmacol Sin. 2025 Apr;46(4):1111-1122 [PMID: 39643640]
  28. Neuropharmacology. 2018 Jan;128:340-350 [PMID: 29107625]
  29. J Rheumatol. 2016 Sep;43(9):1637-42 [PMID: 27422891]
  30. Nat Commun. 2024 Mar 20;15(1):2493 [PMID: 38509098]
  31. Nat Commun. 2022 Mar 15;13(1):1364 [PMID: 35292680]
  32. Signal Transduct Target Ther. 2023 Mar 14;8(1):115 [PMID: 36918529]
  33. Chem Rev. 2011 Nov 9;111(11):7121-56 [PMID: 21842846]
  34. Cell. 2019 Jan 24;176(3):479-490.e12 [PMID: 30639100]
  35. Nature. 1972 Apr 21;236(5347):385-90 [PMID: 4401751]
  36. Br J Pharmacol. 2017 Jan;174(1):28-40 [PMID: 27714773]
  37. EMBO J. 2023 Jun 1;42(11):e112940 [PMID: 37038975]
  38. Mol Cell. 2021 Mar 18;81(6):1147-1159.e4 [PMID: 33548201]
  39. Allergy. 2016 Sep;71(9):1264-73 [PMID: 26948974]
  40. Acta Crystallogr D Struct Biol. 2018 Jun 1;74(Pt 6):531-544 [PMID: 29872004]
  41. Nat Commun. 2018 Sep 13;9(1):3712 [PMID: 30213947]
  42. Nature. 2015 Aug 13;524(7564):173-179 [PMID: 26147082]
  43. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  44. Front Immunol. 2018 Jun 20;9:1392 [PMID: 29973935]
  45. Front Pharmacol. 2019 Jun 05;10:556 [PMID: 31231212]
  46. Science. 2022 Jan 28;375(6579):403-411 [PMID: 35084960]
  47. Nucleic Acids Res. 2022 Jan 7;50(D1):D439-D444 [PMID: 34791371]
  48. Nature. 2024 Jun;630(8016):493-500 [PMID: 38718835]
  49. Br J Pharmacol. 2013 Sep;170(1):78-88 [PMID: 23351115]
  50. Mol Cell. 2022 Jul 21;82(14):2681-2695.e6 [PMID: 35714614]
  51. Nat Struct Mol Biol. 2021 Nov;28(11):879-888 [PMID: 34759375]
  52. Mol Cell Endocrinol. 2019 May 15;488:1-13 [PMID: 30930094]
  53. Br J Pharmacol. 2009 May;157(1):24-33 [PMID: 19309354]
  54. Nat Commun. 2022 Oct 15;13(1):6105 [PMID: 36243875]
  55. Cell. 2019 Jun 13;177(7):1933-1947.e25 [PMID: 31160049]
  56. Acta Crystallogr D Biol Crystallogr. 2004 Dec;60(Pt 12 Pt 1):2126-32 [PMID: 15572765]
  57. Mol Pharmacol. 2009 Apr;75(4):982-90 [PMID: 19168624]
  58. Am J Physiol Cell Physiol. 2022 Aug 1;323(2):C583-C594 [PMID: 35816640]
  59. Nat Struct Mol Biol. 2022 Dec;29(12):1188-1195 [PMID: 36396979]
  60. Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21 [PMID: 20124702]
  61. Elife. 2022 Dec 05;11: [PMID: 36468689]
  62. Ann Allergy Asthma Immunol. 2018 Nov;121(5):568-574 [PMID: 30102965]
  63. Pharmacol Rev. 2015 Jul;67(3):601-55 [PMID: 26084539]
  64. Biochem J. 2021 Dec 22;478(24):4169-4185 [PMID: 34783343]
  65. Nat Commun. 2024 Sep 27;15(1):8296 [PMID: 39333117]
  66. Life Sci. 2013 Feb 7;92(2):108-13 [PMID: 23154242]
  67. Exp Dermatol. 2022 Jul;31(7):993-1004 [PMID: 35538735]
  68. Allergy. 2021 Sep;76(9):2886-2890 [PMID: 34129684]
  69. Eur J Immunol. 2011 Jun;41(6):1764-73 [PMID: 21469095]
  70. Nat Commun. 2024 Feb 28;15(1):1831 [PMID: 38418462]
  71. Nat Methods. 2017 Apr;14(4):331-332 [PMID: 28250466]
  72. J Chem Inf Model. 2008 Jul;48(7):1455-63 [PMID: 18553960]
  73. Nat Struct Mol Biol. 2024 Jul;31(7):997-1000 [PMID: 38977902]
  74. Signal Transduct Target Ther. 2024 Apr 10;9(1):88 [PMID: 38594257]
  75. Protein Sci. 2018 Jan;27(1):14-25 [PMID: 28710774]
  76. Int J Mol Sci. 2021 Jun 06;22(11): [PMID: 34204101]

Grants

  1. Z23C050004/Zhejiang Provincial Natural Science Foundation
  2. 2018YFA0508100/National Key R&D Program of China
  3. 81722044/National Natural Science Foundation of China
  4. 91753115/National Natural Science Foundation of China
  5. 21778049/National Natural Science Foundation of China
  6. 81861148018/National Natural Science Foundation of China
  7. 2018ZX09711002/National Science and Technology Major Project of China

Word Cloud

Created with Highcharts 10.0.0GproteinhistamineHRsreceptorsbindingAlphaFold3fourrolesexperimentalstructuresHRregulationcryo-EMstructure2modelsAF3interfacesactivationintracellularbiasligand-bindingsubtypesprotein-coupledGPCRsregulatedplaycriticalvariousphysiologicalpathologicalprocessesallergygastricacidsecretioncognitivesleepdisordersinflammationPreviousagonistsantagonistsexhibitedmultipleconformationsligandsHoweverstructuralbasissignalingremainselusivedeterminedcryo-electronmicroscopyH4R-histamine-Gicomplex9Åresolutionpredictedligand-freeaposubtypestatesusingcomparingH4RcomputationalelucidateddistinctmodesproposedessentialYQreceptorloopICL2findingsdecipheredmolecularmechanismsunderlyingdifferentextracellularpocketstransmembranemotifscouplinginsightsexpectedfacilitateselectivedrugdiscoverytargetingdiversetherapeuticpurposesCryo-EMStructuresModelsHistamineReceptorsRevealDiverseLigandBindingProteinBiasmechanismpocket

Similar Articles

Cited By