Prevalence of EBV, HHV6, HCMV, HAdV, SARS-CoV-2, and Autoantibodies to Type I Interferon in Sputum from Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients.

Ulf Hannestad, Annika Allard, Kent Nilsson, Anders Rosén
Author Information
  1. Ulf Hannestad: Department of Biomedical & Clinical Sciences, Division of Cell & Neurobiology, Linköping University, SE-58185 Linköping, Sweden.
  2. Annika Allard: Department of Clinical Microbiology, Clinical Virology, Umeå University, SE-90185 Umeå, Sweden. ORCID
  3. Kent Nilsson: Department of Pain and Rehabilitation, Linköping University Hospital, SE-58758 Linköping, Sweden.
  4. Anders Rosén: Department of Biomedical & Clinical Sciences, Division of Cell & Neurobiology, Linköping University, SE-58185 Linköping, Sweden. ORCID

Abstract

An exhausted antiviral immune response is observed in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and post-SARS-CoV-2 syndrome, also termed long COVID. In this study, potential mechanisms behind this exhaustion were investigated. First, the viral load of Epstein-Barr virus (EBV), human adenovirus (HAdV), human cytomegalovirus (HCMV), human herpesvirus 6 (HHV6), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was determined in sputum samples (n = 29) derived from ME/CFS patients (n = 13), healthy controls (n = 10), elderly healthy controls (n = 4), and immunosuppressed controls (n = 2). Secondly, autoantibodies (autoAbs) to type I interferon (IFN-I) in sputum were analyzed to possibly explain impaired viral immunity. We found that ME/CFS patients released EBV at a significantly higher level compared to controls ( = 0.0256). HHV6 was present in ~50% of all participants at the same level. HAdV was detected in two cases with immunosuppression and severe ME/CFS, respectively. HCMV and SARS-CoV-2 were found only in immunosuppressed controls. Notably, anti-IFN-I autoAbs in ME/CFS and controls did not differ, except in a severe ME/CFS case showing an increased level. We conclude that ME/CFS patients, compared to controls, have a significantly higher load of EBV. IFN-I autoAbs cannot explain IFN-I dysfunction, with the possible exception of severe cases, also reported in severe SARS-CoV-2. We forward that additional mechanisms, such as the viral evasion of IFN-I effect via the degradation of IFN-receptors, may be present in ME/CFS, which demands further studies.

Keywords

References

  1. Nat Rev Immunol. 2022 Aug;22(8):471-483 [PMID: 34671122]
  2. Cancer Sci. 2021 Dec;112(12):5088-5099 [PMID: 34609775]
  3. Viruses. 2023 Jan 31;15(2): [PMID: 36851614]
  4. NCHS Data Brief. 2023 Dec;(488):1-8 [PMID: 38085820]
  5. Sci Immunol. 2023 Dec 22;8(90):eabp8966 [PMID: 35857576]
  6. PLoS One. 2011;6(9):e24859 [PMID: 21980361]
  7. PLoS Pathog. 2023 Aug 17;19(8):e1011523 [PMID: 37590180]
  8. BMJ. 2006 Sep 16;333(7568):575 [PMID: 16950834]
  9. Eur J Immunol. 2023 Jun;53(6):e2250164 [PMID: 37027328]
  10. J Med Virol. 2020 Dec;92(12):3682-3688 [PMID: 32129496]
  11. Cell. 2009 Jul 10;138(1):30-50 [PMID: 19596234]
  12. J Clin Pathol. 2007 Feb;60(2):117-9 [PMID: 16935963]
  13. Front Immunol. 2019 Aug 14;10:1946 [PMID: 31475007]
  14. Euro Surveill. 2020 Jan;25(3): [PMID: 31992387]
  15. Clin Microbiol Infect. 2016 Apr;22(4):381.e1-381.e8 [PMID: 26711435]
  16. FEBS Lett. 2019 Dec;593(24):3571-3582 [PMID: 31411731]
  17. Sci Signal. 2014 May 27;7(327):ra50 [PMID: 24866020]
  18. Acta Otolaryngol. 2025 Feb;145(2):164-167 [PMID: 39921355]
  19. J Intern Med. 2024 Jul;296(1):93-115 [PMID: 38693641]
  20. Cell. 2024 Dec 26;187(26):7621-7636.e19 [PMID: 39672162]
  21. Future Microbiol. 2020 Apr;15:389-400 [PMID: 32166967]
  22. Nature. 2023 Nov;623(7988):803-813 [PMID: 37938781]
  23. Blood. 2020 Apr 23;135(17):1447-1451 [PMID: 32076716]
  24. J Clin Invest. 2015 Nov 2;125(11):4135-48 [PMID: 26457731]
  25. Cell. 2024 Oct 3;187(20):5500-5529 [PMID: 39326415]
  26. JCI Insight. 2023 Feb 8;8(3): [PMID: 36752204]
  27. Discov Oncol. 2022 Mar 21;13(1):18 [PMID: 35312853]
  28. Clin Microbiol Rev. 2014 Jul;27(3):441-62 [PMID: 24982316]
  29. Viruses. 2019 Aug 30;11(9): [PMID: 31480296]
  30. Front Pediatr. 2019 Jan 08;6:412 [PMID: 30671425]
  31. Antiviral Res. 2016 Oct;134:58-62 [PMID: 27582067]
  32. J Virol. 2002 Nov;76(21):10608-16 [PMID: 12368303]
  33. Front Med (Lausanne). 2023 Jun 29;10:1208181 [PMID: 37457558]
  34. J Exp Med. 2023 Sep 4;220(9): [PMID: 37347462]
  35. Mayo Clin Proc. 2021 Nov;96(11):2861-2878 [PMID: 34454716]
  36. Trends Mol Med. 2021 Sep;27(9):895-906 [PMID: 34175230]
  37. Nat Med. 2022 May;28(5):911-923 [PMID: 35585196]
  38. Cell. 2022 Mar 3;185(5):881-895.e20 [PMID: 35216672]
  39. Curr Opin Infect Dis. 2018 Jun;31(3):251-256 [PMID: 29601326]
  40. J Intern Med. 2011 Oct;270(4):327-38 [PMID: 21777306]
  41. J Med Virol. 2014 Dec;86(12):2122-7 [PMID: 24797344]
  42. Biomolecules. 2021 Jan 29;11(2): [PMID: 33572802]
  43. In Vivo. 2010 Mar-Apr;24(2):185-8 [PMID: 20363992]
  44. Front Immunol. 2018 Feb 15;9:229 [PMID: 29497420]
  45. J Clin Immunol. 2023 Aug;43(6):1093-1103 [PMID: 37209324]
  46. J Clin Virol. 2016 Oct;83:1-4 [PMID: 27513204]
  47. Front Microbiol. 2022 Jul 22;13:955603 [PMID: 35935191]
  48. Appl Environ Microbiol. 2002 Sep;68(9):4523-33 [PMID: 12200309]
  49. Crit Rev Oncol Hematol. 2025 Mar;207:104610 [PMID: 39746492]
  50. Cell. 2023 Jan 5;186(1):112-130.e20 [PMID: 36580912]
  51. J Virol. 2007 Jul;81(14):7629-35 [PMID: 17494079]
  52. J Exp Med. 2024 Oct 7;221(10): [PMID: 39316018]
  53. Front Immunol. 2022 Oct 20;13:949787 [PMID: 36341457]
  54. JCI Insight. 2024 Oct 22;9(20): [PMID: 39435656]

Grants

  1. 211832Pj01H2/Swedish Cancer Society
  2. 4.3-2019-00201 GD-2020-138/the Swedish Research Council

MeSH Term

Humans
Fatigue Syndrome, Chronic
Male
Female
Middle Aged
Interferon Type I
Adult
COVID-19
SARS-CoV-2
Herpesvirus 6, Human
Viral Load
Autoantibodies
Cytomegalovirus
Herpesvirus 4, Human
Aged
Prevalence

Chemicals

Interferon Type I
Autoantibodies

Word Cloud

Created with Highcharts 10.0.0ME/CFScontrolshuman=severensyndromeEBVSARS-CoV-2autoAbsIFN-IviralHAdVHCMVHHV6patientslevelmyalgicencephalomyelitis/chronicfatiguealsomechanismsloadvirusadenoviruscytomegalovirusherpesvirus62sputumhealthyimmunosuppressedtypeinterferonexplainfoundsignificantlyhighercomparedpresentcasesexhaustedantiviralimmuneresponseobservedpost-SARS-CoV-2termedlongCOVIDstudypotentialbehindexhaustioninvestigatedFirstEpstein-Barracuterespiratorycoronavirusdeterminedsamples29derived1310elderly4Secondlyautoantibodiesanalyzedpossiblyimpairedimmunityreleased00256~50%participantsdetectedtwoimmunosuppressionrespectivelyNotablyanti-IFN-IdifferexceptcaseshowingincreasedconcludedysfunctionpossibleexceptionreportedforwardadditionalevasioneffectviadegradationIFN-receptorsmaydemandsstudiesPrevalenceAutoantibodiesTypeInterferonSputumMyalgicEncephalomyelitis/ChronicFatigueSyndromePatientsEpstein–Barr

Similar Articles

Cited By