Mechanistic investigation of Shuanghuanglian against infectious bronchitis in chickens: a network pharmacology and molecular dynamics study.

Fuming You, Hanzhao Zhang, Linghao Meng, Chuanhong Li, Yuxia Yang, Yongqiang Wang, Rigetu Zhao, Luomeng Chao
Author Information
  1. Fuming You: College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China.
  2. Hanzhao Zhang: College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China.
  3. Linghao Meng: College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China.
  4. Chuanhong Li: College of Computer Science and Technology, Inner Mongolia MINZU University, Tongliao, China.
  5. Yuxia Yang: College of Computer Science and Technology, Inner Mongolia MINZU University, Tongliao, China.
  6. Yongqiang Wang: Zhalantun Vocational College, Zhalantun, China.
  7. Rigetu Zhao: Chifeng Academy of Agricultural and Animal Husbandry Sciences, Chifeng, China.
  8. Luomeng Chao: College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao, China.

Abstract

Introduction: Infectious bronchitis (IB) poses a major challenge to global poultry production, causing substantial economic burdens and underscoring the necessity for novel therapeutic interventions given the limitations of current vaccines and conventional antiviral agents. The purpose of this study is to comprehensively explore the active components in Shuanghuanglian and their interaction with the key pathological targets of IBV (Infectious bronchitis virus) infection. By using advanced computational methods, this study aims not only to identify the therapeutic potential of active ingredients, but also to reveal their mechanism of action against IBV.
Methods: Through integrative systems pharmacology approaches, we systematically investigated Shuanghuanglian and its phytochemical constituents against IB, employing multi-omics analysis, ensemble machine learning, and all-atom molecular dynamics (MD) simulations. Network pharmacology revealed 65 target genes associated with Shuanghuanglian's primary bioactive components (quercetin, kaempferol, wogonin, and luteolin), exhibiting high network centrality.
Results: Using the TCMSP database, we found 65 target genes associated with key active components, such as quercetin and kaempferol, which exhibited strong connectivity in our network analysis. The GeneCards database also identified 40 common target genes shared by Shuanghuanglian and IB. Importantly, BCL2 and IL6 were recognized as key targets in the protein-protein interaction (PPI) network analysis, highlighting their roles in apoptosis and inflammation. Furthermore, analyses using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways revealed significant roles in regulating the cell cycle and inflammatory responses. Machine learning techniques identified BCL2 and IL6 as critical genes for therapeutic intervention, supported by molecular docking results that showed strong binding energies. Furthermore, molecular dynamics simulations confirm the stability of the complexes, underscoring the importance of these interactions for treatment efficacy.
Conclusion: We used a variety of analytical methods, and finally identified the potential active ingredients of Shuanghuanglian as kaempferol, quercetin, wogonin, and luteolin. The active ingredients target BCL2 and IL6 and play a therapeutic role in avian infectious bronchitis by inhibiting apoptosis and reducing inflammatory response.

Keywords

References

  1. Int J Mol Sci. 2019 Sep 04;20(18): [PMID: 31487867]
  2. J Inflamm Res. 2024 Oct 29;17:7893-7912 [PMID: 39494203]
  3. J R Soc Interface. 2007 Jun 22;4(14):505-21 [PMID: 17251132]
  4. PLoS Biol. 2008 Dec 2;6(12):2853-68 [PMID: 19053174]
  5. Br Poult Sci. 2022 Aug;63(4):484-492 [PMID: 35179081]
  6. Sci Total Environ. 2022 Feb 1;806(Pt 2):150674 [PMID: 34597539]
  7. Front Immunol. 2021 Jul 22;12:679897 [PMID: 34367139]
  8. Am J Chin Med. 2015;43(1):1-23 [PMID: 25579759]
  9. Evid Based Complement Alternat Med. 2020 Nov 03;2020:5786053 [PMID: 33204288]
  10. Med Oncol. 2021 Jul 14;38(8):94 [PMID: 34259934]
  11. J Comput Chem. 2005 Dec;26(16):1701-18 [PMID: 16211538]
  12. Protein Cell. 2013 Mar;4(3):176-85 [PMID: 23483479]
  13. Methods Mol Biol. 2017;1666:539-556 [PMID: 28980264]
  14. J Comput Chem. 2004 Jul 15;25(9):1157-74 [PMID: 15116359]
  15. Chaos Solitons Fractals. 2022 Mar;156:111812 [PMID: 35075336]
  16. J Ethnopharmacol. 2011 Jan 27;133(2):634-41 [PMID: 21073943]
  17. J Mol Neurosci. 2000 Dec;15(3):155-65 [PMID: 11303780]
  18. Front Endocrinol (Lausanne). 2024 Feb 16;15:1320092 [PMID: 38435751]
  19. Nucleic Acids Res. 2022 Jul 5;50(W1):W216-W221 [PMID: 35325185]
  20. Am J Transl Res. 2024 Dec 15;16(12):7262-7277 [PMID: 39822489]
  21. Transbound Emerg Dis. 2020 May;67(3):1349-1355 [PMID: 31943814]
  22. J Ethnopharmacol. 2018 Jan 10;210:318-339 [PMID: 28887216]
  23. Nucleic Acids Res. 2023 Jan 6;51(D1):D523-D531 [PMID: 36408920]
  24. Biomolecules. 2023 Jul 20;13(7): [PMID: 37509188]
  25. Curr Protoc Bioinformatics. 2016 Jun 20;54:1.30.1-1.30.33 [PMID: 27322403]
  26. J Ethnopharmacol. 2023 Jun 12;309:116306 [PMID: 36858276]
  27. Antioxidants (Basel). 2023 Jan 09;12(1): [PMID: 36671017]
  28. Brief Bioinform. 2014 Mar;15(2):177-94 [PMID: 23780996]
  29. Avian Dis. 2013 Sep;57(3):667-70 [PMID: 24283135]
  30. Neuroscience. 2020 Dec 15;451:207-215 [PMID: 33137409]
  31. J Ethnopharmacol. 2025 Jan 30;337(Pt 1):118795 [PMID: 39278293]
  32. Comput Biol Med. 2022 Jun;145:105454 [PMID: 35367781]
  33. Inflammation. 2020 Feb;43(1):95-108 [PMID: 31673976]
  34. Avian Dis. 2021 Dec;65(4):600-611 [PMID: 35068104]
  35. Phytomedicine. 2024 Apr;126:155410 [PMID: 38367422]
  36. J Proteome Res. 2021 Apr 2;20(4):1943-1950 [PMID: 33689356]
  37. J Mol Graph Model. 2017 Jun;74:143-152 [PMID: 28432959]
  38. Vet Microbiol. 2015 Dec 31;181(3-4):241-51 [PMID: 26482289]
  39. Microb Pathog. 2022 Jan;162:105352 [PMID: 34883226]
  40. Res Vet Sci. 2021 May;136:587-594 [PMID: 33892367]
  41. Curr Res Microb Sci. 2022 Jul 13;3:100155 [PMID: 35909616]
  42. Front Pharmacol. 2023 Apr 24;14:1188202 [PMID: 37168996]
  43. Nucleic Acids Res. 2023 Jan 6;51(D1):D638-D646 [PMID: 36370105]
  44. Neurotox Res. 2021 Dec;39(6):1800-1811 [PMID: 34655374]
  45. J Food Sci. 2017 May;82(5):1239-1246 [PMID: 28407238]
  46. Biopsychosoc Med. 2021 Nov 27;15(1):23 [PMID: 34838129]
  47. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  48. Molecules. 2022 May 09;27(9): [PMID: 35566391]
  49. J Pharm Pharm Sci. 2023 May 25;26:11225 [PMID: 37305432]
  50. Anal Cell Pathol (Amst). 2023 Dec 2;2023:4500810 [PMID: 38077523]
  51. J Sep Sci. 2022 Mar;45(5):1020-1030 [PMID: 34967127]
  52. Biomed Res Int. 2021 Oct 28;2021:9965906 [PMID: 34746316]
  53. Rev Sci Tech. 2000 Aug;19(2):493-508 [PMID: 10935276]
  54. Biomed Pharmacother. 2021 Jan;133:110917 [PMID: 33217688]
  55. Avian Pathol. 2013 Feb;42(1):9-16 [PMID: 23391176]
  56. Int J Mol Sci. 2012;13(6):6964-6982 [PMID: 22837674]
  57. Evid Based Complement Alternat Med. 2013;2013:987326 [PMID: 23606893]
  58. J Cheminform. 2014 Apr 16;6:13 [PMID: 24735618]
  59. Talanta. 2021 Aug 1;230:122328 [PMID: 33934785]
  60. Poult Sci. 2019 Dec 1;98(12):6367-6377 [PMID: 31399732]
  61. Vet Res. 2007 Mar-Apr;38(2):281-97 [PMID: 17296157]
  62. Viruses. 2023 Nov 22;15(12): [PMID: 38140526]
  63. Evid Based Complement Alternat Med. 2017;2017:7525179 [PMID: 29234428]
  64. Medicine (Baltimore). 2024 Jun 7;103(23):e38440 [PMID: 38847696]
  65. Am J Chin Med. 2005;33(3):365-79 [PMID: 16047555]

Word Cloud

Created with Highcharts 10.0.0ShuanghuanglianmolecularbronchitisactivenetworktherapeuticpharmacologydynamicstargetgenesIBstudycomponentskeyingredientsanalysislearningquercetinkaempferolidentifiedBCL2IL6infectiousInfectiousunderscoringinteractiontargetsIBVusingmethodspotentialalsomachinesimulationsrevealed65associatedwogoninluteolindatabasestrongrolesapoptosisFurthermoreinflammatorydockingIntroduction:posesmajorchallengeglobalpoultryproductioncausingsubstantialeconomicburdensnecessitynovelinterventionsgivenlimitationscurrentvaccinesconventionalantiviralagentspurposecomprehensivelyexplorepathologicalvirusinfectionadvancedcomputationalaimsidentifyrevealmechanismactionMethods:integrativesystemsapproachessystematicallyinvestigatedphytochemicalconstituentsemployingmulti-omicsensembleall-atomMDNetworkShuanghuanglian'sprimarybioactiveexhibitinghighcentralityResults:UsingTCMSPfoundexhibitedconnectivityGeneCards40commonsharedImportantlyrecognizedprotein-proteinPPIhighlightinginflammationanalysesGeneOntologyGOKyotoEncyclopediaGenesGenomesKEGGpathwayssignificantregulatingcellcycleresponsesMachinetechniquescriticalinterventionsupportedresultsshowedbindingenergiesconfirmstabilitycomplexesimportanceinteractionstreatmentefficacyConclusion:usedvarietyanalyticalfinallyplayroleavianinhibitingreducingresponseMechanisticinvestigationchickens:simulation

Similar Articles

Cited By