CLMT: graph contrastive learning model for microbe-drug associations prediction with transformer.

Liqi Xiao, Junlong Wu, Liu Fan, Lei Wang, Xianyou Zhu
Author Information
  1. Liqi Xiao: College of Computer Science and Technology, Hengyang Normal University, Hengyang, China.
  2. Junlong Wu: College of Computer Science and Technology, Hengyang Normal University, Hengyang, China.
  3. Liu Fan: College of Computer Science and Technology, Hengyang Normal University, Hengyang, China.
  4. Lei Wang: Technology Innovation Center of Changsha, Changsha University, Changsha, China.
  5. Xianyou Zhu: College of Computer Science and Technology, Hengyang Normal University, Hengyang, China.

Abstract

Accurate prediction of microbe-drug associations is essential for drug development and disease diagnosis. However, existing methods often struggle to capture complex nonlinear relationships, effectively model long-range dependencies, and distinguish subtle similarities between microbes and drugs. To address these challenges, this paper introduces a new model for microbe-drug association prediction, CLMT. The proposed model differs from previous approaches in three key ways. Firstly, unlike conventional GCN-based models, CLMT leverages a Graph Transformer network with an attention mechanism to model high-order dependencies in the microbe-drug interaction graph, enhancing its ability to capture long-range associations. Then, we introduce graph contrastive learning, generating multiple augmented views through node perturbation and edge dropout. By optimizing a contrastive loss, CLMT distinguishes subtle structural variations, making the learned embeddings more robust and generalizable. By integrating multi-view contrastive learning and Transformer-based encoding, CLMT effectively mitigates data sparsity issues, significantly outperforming existing methods. Experimental results on three publicly available datasets demonstrate that CLMT achieves state-of-the-art performance, particularly in handling sparse data and nonlinear microbe-drug interactions, confirming its effectiveness for real-world biomedical applications. On the MDAD, aBiofilm, and Drug Virus datasets, CLMT outperforms the previously best model in terms of Accuracy by 4.3%, 3.5%, and 2.8%, respectively.

Keywords

References

  1. Brief Bioinform. 2021 May 20;22(3): [PMID: 32393982]
  2. Nat Rev Immunol. 2004 Jun;4(6):478-85 [PMID: 15173836]
  3. Brief Bioinform. 2020 Jul 15;21(4):1425-1436 [PMID: 31612203]
  4. Comput Biol Med. 2022 Jun;145:105503 [PMID: 35427986]
  5. Nat Rev Microbiol. 2013 Apr;11(4):227-38 [PMID: 23435359]
  6. Bioinformatics. 2020 Dec 30;36(Suppl_2):i779-i786 [PMID: 33381844]
  7. Bioinformatics. 2022 Jan 27;38(4):1118-1125 [PMID: 34864873]
  8. Afr J Med Med Sci. 2004 Mar;33(1):69-72 [PMID: 15490798]
  9. Antimicrob Agents Chemother. 2017 Aug 24;61(9): [PMID: 28630189]
  10. Brief Bioinform. 2021 Jul 20;22(4): [PMID: 33078832]
  11. Front Cell Infect Microbiol. 2018 Dec 07;8:424 [PMID: 30581775]
  12. Bioinformatics. 2020 Dec 8;36(19):4918-4927 [PMID: 32597948]
  13. Eur Urol. 2018 Jul;74(1):48-54 [PMID: 29566957]
  14. Nat Med. 2023 Oct;29(10):2518-2525 [PMID: 37783969]
  15. Int J Infect Dis. 2020 Apr;93:268-276 [PMID: 32081774]
  16. Clin Microbiol Rev. 2019 Mar 13;32(2): [PMID: 30867162]
  17. Nucleic Acids Res. 2018 Jan 4;46(D1):D894-D900 [PMID: 29156005]
  18. JAMA. 2020 Mar 17;323(11):1061-1069 [PMID: 32031570]
  19. Bioinformatics. 2012 Oct 15;28(20):2640-7 [PMID: 22923290]
  20. Nature. 2008 Oct 23;455(7216):1109-13 [PMID: 18806780]
  21. Andrologia. 2021 Mar;53(2):e13899 [PMID: 33242925]
  22. Int J Antimicrob Agents. 2022 Apr;59(4):106567 [PMID: 35288257]
  23. Front Plant Sci. 2021 Feb 16;11:601335 [PMID: 33664752]
  24. PLoS Biol. 2012;10(8):e1001377 [PMID: 22904687]
  25. Front Plant Sci. 2023 Feb 10;14:973207 [PMID: 36866385]
  26. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2015;32(7):1049-64 [PMID: 25893282]
  27. IEEE/ACM Trans Comput Biol Bioinform. 2020 Jul-Aug;17(4):1341-1351 [PMID: 30489271]
  28. Nat Rev Microbiol. 2009 Jan;7(1):61-71 [PMID: 19029955]
  29. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34929742]
  30. J Med Microbiol. 2019 Jan;68(1):1-10 [PMID: 30605076]
  31. BMC Pulm Med. 2021 Jul 5;21(1):212 [PMID: 34225696]
  32. BMC Bioinformatics. 2022 Nov 18;23(1):492 [PMID: 36401174]
  33. Microorganisms. 2021 Dec 26;10(1): [PMID: 35056493]
  34. Nature. 2011 Jun 15;474(7351):327-36 [PMID: 21677749]
  35. J Exp Med. 2019 Jan 7;216(1):20-40 [PMID: 30322864]
  36. Brief Bioinform. 2022 Sep 20;23(5): [PMID: 35524503]
  37. Nat Rev Cancer. 2013 Nov;13(11):800-12 [PMID: 24132111]
  38. Ultrastruct Pathol. 2020 Mar 3;44(2):193-202 [PMID: 32183603]
  39. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34729589]
  40. Antimicrob Agents Chemother. 2017 Nov 22;61(12): [PMID: 28971862]
  41. J Control Release. 2023 Jan;353:1107-1126 [PMID: 36528195]
  42. Food Microbiol. 2020 Oct;91:103506 [PMID: 32539951]
  43. Science. 2006 Jun 2;312(5778):1355-9 [PMID: 16741115]
  44. J Adv Pharm Technol Res. 2020 Jan-Mar;11(1):25-29 [PMID: 32154155]

Word Cloud

Created with Highcharts 10.0.0microbe-drugmodelCLMTgraphcontrastivepredictionlearningassociationsnonlinearexistingmethodscapturerelationshipseffectivelylong-rangedependenciessubtleassociationthreedatadatasetstransformerAccurateessentialdrugdevelopmentdiseasediagnosisHoweveroftenstrugglecomplexdistinguishsimilaritiesmicrobesdrugsaddresschallengespaperintroducesnewproposeddifferspreviousapproacheskeywaysFirstlyunlikeconventionalGCN-basedmodelsleveragesGraphTransformernetworkattentionmechanismhigh-orderinteractionenhancingabilityintroducegeneratingmultipleaugmentedviewsnodeperturbationedgedropoutoptimizinglossdistinguishesstructuralvariationsmakinglearnedembeddingsrobustgeneralizableintegratingmulti-viewTransformer-basedencodingmitigatessparsityissuessignificantlyoutperformingExperimentalresultspubliclyavailabledemonstrateachievesstate-of-the-artperformanceparticularlyhandlingsparseinteractionsconfirmingeffectivenessreal-worldbiomedicalapplicationsMDADaBiofilmDrugVirusoutperformspreviouslybesttermsAccuracy43%35%28%respectivelyCLMT:augmentationaccuracysimilaritymatrices

Similar Articles

Cited By

No available data.