EMIBD9: Estimating 9 condensed IBD coefficients, inbreeding and relatedness from marker genotypes.

Jinliang Wang
Author Information
  1. Jinliang Wang: Institute of Zoology, Zoological Society of London, London, NW1 4RY, United Kingdom. jinliang.wang@ioz.ac.uk.

Abstract

EMIBD9 is a computer programme implementing two likelihood methods for estimating the 9 condensed IBD coefficients, Δ = {Δ, Δ, …, Δ}, between a pair of individuals from their genotype data. Inbreeding coefficients of and relatedness (or kinship coefficient) between individuals are then calculated from the estimated Δ. One method is designed to apply to a small sample or a sample containing a high proportion of close relatives where allele frequencies and their powers or products are poorly estimated by assuming a large sample of non-inbred and unrelated individuals. It adopts an expectation maximisation (EM) algorithm to estimate both Δ and allele frequencies jointly and iteratively. The other method is designed to apply to a large sample of individuals containing few close relatives. It is fast because it, like all previous estimators, estimates Δ only and does not make iterative updates of allele frequencies by accounting for the inferred relatedness through the EM algorithm. EMIBD9 has both methods implemented for multiple computer platforms (Windows, Mac and Linux), and the Windows version has a GUI that facilitates data input and results visualisation. The GUI can also be used to simulate genotype data which are used to investigate factors affecting relatedness estimation accuracy, to optimise the experimental design of a relatedness study, and to compare the performance of different relatedness estimators.

References

  1. Evolution. 1989 Mar;43(2):258-275 [PMID: 28568555]
  2. Bioinformatics. 2024 Feb 1;40(2): [PMID: 38364309]
  3. Theor Popul Biol. 2016 Feb;107:4-13 [PMID: 26344786]
  4. Theor Popul Biol. 2014 Mar;92:22-9 [PMID: 24269334]
  5. Hum Hered. 1993 Jan-Feb;43(1):45-52 [PMID: 8514326]
  6. Genome Res. 2009 Feb;19(2):318-26 [PMID: 18971310]
  7. Genetics. 2017 Aug;206(4):2085-2103 [PMID: 28550018]
  8. Nat Rev Genet. 2018 Apr;19(4):220-234 [PMID: 29335644]
  9. Genetics. 1999 Aug;152(4):1753-66 [PMID: 10430599]
  10. Biometrics. 1972 Dec;28(4):1101-14 [PMID: 4648793]
  11. Genetics. 2003 Mar;163(3):1153-67 [PMID: 12663552]
  12. Genetics. 2013 Jun;194(2):459-71 [PMID: 23535385]
  13. Genet Res. 2007 Jun;89(3):135-53 [PMID: 17894908]
  14. Genetics. 2002 Mar;160(3):1203-15 [PMID: 11901134]
  15. Am J Hum Genet. 2016 Jan 7;98(1):127-48 [PMID: 26748516]
  16. Gigascience. 2019 May 1;8(5): [PMID: 31042285]
  17. Genetics. 1964 Dec;50:1319-48 [PMID: 14239792]
  18. Genetics. 2007 May;176(1):421-40 [PMID: 17339212]
  19. Mol Ecol. 2001 Nov;10(11):2719-28 [PMID: 11883885]
  20. Genetics. 2017 May;206(1):105-118 [PMID: 28341647]
  21. Mol Ecol Resour. 2011 Jan;11(1):141-5 [PMID: 21429111]

MeSH Term

Algorithms
Genotype
Gene Frequency
Models, Genetic
Software
Genetic Markers
Inbreeding
Likelihood Functions
Humans
Computer Simulation
Pedigree
Genetics, Population

Chemicals

Genetic Markers

Word Cloud

Created with Highcharts 10.0.0relatednessΔindividualssamplecoefficientsdataallelefrequenciesEMIBD9computermethods9condensedIBDgenotypeestimatedmethoddesignedapplycontainingcloserelativeslargeEMalgorithmestimatorsWindowsGUIusedprogrammeimplementingtwolikelihoodestimating=Δ}pairInbreedingkinshipcoefficientcalculatedOnesmallhighproportionpowersproductspoorlyassumingnon-inbredunrelatedadoptsexpectationmaximisationestimatejointlyiterativelyfastlikepreviousestimatesmakeiterativeupdatesaccountinginferredimplementedmultipleplatformsMacLinuxversionfacilitatesinputresultsvisualisationcanalsosimulateinvestigatefactorsaffectingestimationaccuracyoptimiseexperimentaldesignstudycompareperformancedifferentEMIBD9:Estimatinginbreedingmarkergenotypes

Similar Articles

Cited By

No available data.