Microbial synthesis of enantiopure (S)-2-methylbutanoic acid via L-isoleucine catabolism in Bacillus spizizenii.

Jing-Yi Zhao, Fan Gao, Mengru Wu, Yang Li, Yong Chen, Zijun Xiao
Author Information
  1. Jing-Yi Zhao: Department of Biology and Energy Chemical Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, 266580, China.
  2. Fan Gao: Department of Biology and Energy Chemical Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, 266580, China.
  3. Mengru Wu: Department of Biology and Energy Chemical Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, 266580, China.
  4. Yang Li: Department of Biology and Energy Chemical Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, 266580, China.
  5. Yong Chen: Department of Biology and Energy Chemical Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, 266580, China.
  6. Zijun Xiao: Department of Biology and Energy Chemical Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Huangdao District, Qingdao, 266580, China. zjxiao@upc.edu.cn.

Abstract

Enantiopure (S)-2-methylbutanoic acid [(S)-2-MBA] is a high-value chiral compound with applications in fragrances, pharmaceuticals, and agrochemicals. However, conventional chemical synthesis lacks stereoselectivity, while existing biosynthetic methods suffer from low yield and purity. Here, we report a novel microbial process using Bacillus spizizenii ATCC 6633 for efficient (S)-2-MBA production via L-isoleucine catabolism. Through targeted screening of rhizospheric soil isolates and Bacillaceae strains, ATCC 6633 demonstrated superior performance, producing 3.67 g/L (S)-2-MBA with 99.32% enantiomeric excess (ee) under optimized conditions (45 °C, 8% inoculation, 5 g/L glucose, and 8 g/L L-isoleucine). A 58.92% conversion efficiency was achieved, and a simplified purification process recovered 63.90% product with 97.32% purity. Mechanistic studies suggested glucose depletion triggered (S)-2-MBA accumulation, aligning with starvation-induced secondary metabolism. This cost-effective, eco-friendly approach eliminates racemic separation steps and harsh reagents, positioning ATCC 6633 as a promising biocatalyst for sustainable (S)-2-MBA production.

Keywords

References

  1. Allison MJ (1978) Production of branched-chain volatile fatty acids by certain anaerobic bacteria. Appl Environ Microbiol 35(5):872–877. https://doi.org/10.1128/aem.35.5.872-877.1978 [DOI: 10.1128/aem.35.5.872-877.1978]
  2. Api AM, Belmonte F, Belsito D, Botelho D, Bruze M, Burton GA, Buschmann J, Dagli ML, Date M, Dekant W, Deodhar C, Fryer AD, Gadhia S, Jones L, Joshi K, La Cava S, Lapczynski A, Lavelle M, Liebler DC, Na M, O’Brien D, Penning TM, Ritacco G, Romine J, Sadekar N, Salvito D, Schultz TW, Sipes IG, Sullivan G, Thakkar Y, Tokura Y, Tsang S (2019) RIFM fragrance ingredient safety assessment, 2-methylbutyric acid, CAS registry number 116-53-0. Food Chem Toxicol 130:110574. https://doi.org/10.1016/j.fct.2019.110574 [DOI: 10.1016/j.fct.2019.110574]
  3. Aulitto M, Alfano A, Maresca E, Avolio R, Errico ME, Gentile G, Cozzolino F, Monti M, Pirozzi A, Donsì F, Cimini D, Schiraldi C, Contursi P (2024) Thermophilic biocatalysts for one-step conversion of citrus waste into lactic acid. Appl Microbiol Biot 108:155. https://doi.org/10.1007/s00253-023-12904-7 [DOI: 10.1007/s00253-023-12904-7]
  4. Bayhan B, Özdemir A, Dertli E, Şahin E (2024) Efficient bioreduction of 4-phenyl-2-butanone to drug precursor (S)-4-phenyl-2-butanol by a whole-cell biocatalyst using a novel hybrid design technique. Mol Catal 564:114289. https://doi.org/10.1016/j.mcat.2024.114289 [DOI: 10.1016/j.mcat.2024.114289]
  5. Bülbül AS, Şahin E (2024) Green synthesis of (S)-1-(furan-2-yl)propan-1-ol from asymmetric bioreduction of 1-(furan-2-yl)propan-1-one using whole-cell of Lactobacillus paracasei BD101. Chirality 36(1):e23620. https://doi.org/10.1002/chir.23620 [DOI: 10.1002/chir.23620]
  6. Çakmak F, Özdemir A, Dertli E, Şahin E (2024) Effective biocatalytic synthesis of enentiopure (R)-1,2-diphenylethanol as a pharmaceutical precursor using whole-cell biocatalyst. Mol Catal 563:114257. https://doi.org/10.1016/j.mcat.2024.114257 [DOI: 10.1016/j.mcat.2024.114257]
  7. Chalita M, Kim YO, Park S, Oh H-S, Cho JH, Moon J, Baek N, Moon C, Lee K, Yang J, Nam GG, Jung Y, Na S-I, Bailey MJ, Chun J (2024) EzBioCloud: a genome-driven database and platform for Microbiome identification and discovery. Int J Syst Evol Micr 74(6):006421. https://doi.org/10.1099/ijsem.0.006421 [DOI: 10.1099/ijsem.0.006421]
  8. Chen L, Liu B, Li D, Wang S, Ma X, Zhang Y (2023) Effects of fermentation on flavor and antioxidant activity in Ginkgo rice wine. Food Biosci 53:102652. https://doi.org/10.1016/j.fbio.2023.102652 [DOI: 10.1016/j.fbio.2023.102652]
  9. Çolak NS, Kalay E, Şahin E (2021) Asymmetric reduction of prochiral aromatic and hetero aromatic ketones using whole-cell of Lactobacillus Senmaizukei biocatalyst. Synth Commun 51(15):2305–2315. https://doi.org/10.1080/00397911.2021.1931337 [DOI: 10.1080/00397911.2021.1931337]
  10. Davidson BS, Eisner T, Witz B, Meinwald J (1989) Defensive secretion of the carabid beetle Pasimachus subsulcatus. J Chem Ecol 15(6):1689–1697. https://doi.org/10.1007/bf01012258 [DOI: 10.1007/bf01012258]
  11. Dehority BA, Scott HW, Kowaluk P (1967) Volatile fatty acid requirements of cellulolytic rumen bacteria. J Bacteriol 94(3):537–543. https://doi.org/10.1128/jb.94.3.537-543.1967 [DOI: 10.1128/jb.94.3.537-543.1967]
  12. Dhande YK, Xiong M, Zhang K (2012) Production of C5 carboxylic acids in engineered Escherichia coli. Process Biochem 47(12):1965–1971. https://doi.org/10.1016/j.procbio.2012.07.005 [DOI: 10.1016/j.procbio.2012.07.005]
  13. Díaz-Pérez AL, Díaz-Pérez C, Campos-García J (2015) Bacterial L-leucine catabolism as a source of secondary metabolites. Rev Environ Sci Bio 15(1):1–29. https://doi.org/10.1007/s11157-015-9385-3 [DOI: 10.1007/s11157-015-9385-3]
  14. Dunlap CA, Bowman MJ, Zeigler DR (2019) Promotion of Bacillus subtilis subsp. inaquosorum, Bacillus subtilis subsp. spizizenii and Bacillus subtilis subsp. stercoris to species status. Antonie Van Leeuwenhoek 113(1):1–12. https://doi.org/10.1007/s10482-019-01354-9
  15. Ganesan B, Dobrowolski P, Weimer BC (2006) Identification of the leucine-to-2-methylbutyric acid catabolic pathway of Lactococcus lactis. Appl Environ Microbiol 72(6):4264–4273. https://doi.org/10.1128/aem.00448-06 [DOI: 10.1128/aem.00448-06]
  16. Guillén-Navarro K, López-Gutiérrez T, García-Fajardo V, Gómez-Cornelio S, Zarza E, De la Rosa-García S, Chan-Bacab M (2023) Broad-spectrum antifungal, biosurfactants and bioemulsifier activity of Bacillus subtilis subsp. spizizenii—a potential biocontrol and bioremediation agent in agriculture. Plants 12(6):1374. https://doi.org/10.3390/plants12061374 [DOI: 10.3390/plants12061374]
  17. Harwood CS, Canale-Parola E (1981a) Adenosine 5’-triphosphate-yielding pathways of branched-chain amino acid fermentation by a marine spirochete. J Bacteriol 148(1):117–123. https://doi.org/10.1128/jb.148.1.117-123.1981 [DOI: 10.1128/jb.148.1.117-123.1981]
  18. Harwood CS, Canale-Parola E (1981b) Branched-chain amino acid fermentation by a marine Spirochete: strategy for starvation survival. J Bacteriol 148(1):109–116. https://doi.org/10.1128/jb.148.1.109-116.1981 [DOI: 10.1128/jb.148.1.109-116.1981]
  19. Hayashida-Soiza G, Uchida A, Mori N, Kuwahara Y, Ishida Y (2008) Purification and characterization of antibacterial substances produced by a marine bacterium Pseudoalteromonas haloplanktis strain. J Appl Microbiol 105(5):1672–1677. https://doi.org/10.1111/j.1365-2672.2008.03878.x [DOI: 10.1111/j.1365-2672.2008.03878.x]
  20. Heinsman NWJT, Franssen MCR, van der Padt A, Boom RM, van’t Riet K, de Groot A (2002) Lipase-mediated resolution of branched chain fatty acids. Biocatal Biotransfor 20(5):297–309. https://doi.org/10.1080/10242420290025511 [DOI: 10.1080/10242420290025511]
  21. Hutchinson CR, Kennedy J, Park C, Kendrew S, Auclair K, Vederas J (2000) Aspects of the biosynthesis of non-aromatic fungal polyketides by iterative polyketide synthases. Antonie Van Leeuwenhoek 78:287–295. https://doi.org/10.1023/a:1010294330190 [DOI: 10.1023/a]
  22. Kalay E, Şahin E (2021a) Biocatalytic asymmetric synthesis of (R)-1-tetralol using Lactobacillus paracasei BD101. Chirality 33(8):447–453. https://doi.org/10.1002/chir.23318 [DOI: 10.1002/chir.23318]
  23. Kalay E, Şahin E (2021b) Regioselective asymmetric bioreduction of trans-4-phenylbut-3-en-2-one by whole-cell of Weissella Cibaria N9 biocatalyst. Chirality 33(9):535–542. https://doi.org/10.1002/chir.23337 [DOI: 10.1002/chir.23337]
  24. Kaneda T (1988) Stereoselectivity in the 2-methylbutyrate incorporation into Anteiso fatty acids in Bacillus subtilis mutants. BBA-Lipid Lipid Met 960(1):10–18. https://doi.org/10.1016/0005-2760(88)90003-3 [DOI: 10.1016/0005-2760(88)90003-3]
  25. Korman SH, Andresen BS, Zeharia A, Gutman A, Boneh A, Pitt JJ (2005) 2-Ethylhydracrylic aciduria in short/branched-chain acyl-CoA dehydrogenase deficiency: application to diagnosis and implications for the R-pathway of isoleucine oxidation. Clin Chem 51(3):610–617. https://doi.org/10.1373/clinchem.2004.043265 [DOI: 10.1373/clinchem.2004.043265]
  26. Lee Y-S, Cho J-Y, Moon J-H, Kim K-Y (2016) Identification of 2-methylbutyric acid as a nematicidal metabolite, and biocontrol and biofertilization potentials of Bacillus pumilus L1. Korean J Soil Sci Fert 49(4):401–408. https://doi.org/10.7745/kjssf.2016.49.4.401 [DOI: 10.7745/kjssf.2016.49.4.401]
  27. Li X, Wang D, Xu Y, Geng Y, Chen C, Wang N (2009) Kinetic resolution of 2-methylbutyric acid and its ester by esterification and hydrolysis with lipases. Chin J Catal 30(9):951–957
  28. Miller TL, Wolin MJ, Zhao H, Bryant MP (1986) Characteristics of methanogens isolated from bovine rumen. Appl Environ Microbiol 51(1):201–202. https://doi.org/10.1128/aem.51.1.201-202.1986 [DOI: 10.1128/aem.51.1.201-202.1986]
  29. Peirce-Sandner SB, Papas AM, Rogers JA, Sweeney TF, Cummins KA, Conrad HR, Muller LD (1985) Supplementation of dairy cow diets with ammonium salts of volatile fatty acids. J Dairy Sci 68:2895–2907. https://doi.org/10.3168/jds.S0022-0302(85)81183-8 [DOI: 10.3168/jds.S0022-0302(85)81183-8]
  30. Roman-Garcia Y, Denton BL, Mitchell KE, Lee C, Socha MT, Firkins JL (2021) Conditions stimulating neutral detergent fiber degradation by dosing branched-chain volatile fatty acids. I: comparison with branched-chain amino acids and forage source in ruminal batch cultures. J Dairy Sci 104(6):6739–6755. https://doi.org/10.3168/jds.2020-20054 [DOI: 10.3168/jds.2020-20054]
  31. Şahin E (2017) Debaryomyces hansenii as a new biocatalyst in the asymmetric reduction of substituted acetophenones. Biocatal Biotransfor 35(5):363–371. https://doi.org/10.1080/10242422.2017.1348500 [DOI: 10.1080/10242422.2017.1348500]
  32. Şahin E (2018) Production of (R)-1-(1,3-benzodioxol-5-yl)ethanol in high enantiomeric purity by Lactobacillus paracasei BD101. Chirality 30(2):189–194. https://doi.org/10.1002/chir.22782 [DOI: 10.1002/chir.22782]
  33. Şahin E (2019) Green synthesis of enantiopure (S)-1-(benzofuran-2-yl)ethanol by whole-cell biocatalyst. Chirality 31(10):892–897. https://doi.org/10.1002/chir.23123 [DOI: 10.1002/chir.23123]
  34. Şahin E (2020a) Production of enantiopure chiral Aryl heteroaryl carbinols using whole-cell Lactobacillus paracasei biotransformation. Synth Commun 50(4):549–557. https://doi.org/10.1080/00397911.2019.1707226 [DOI: 10.1080/00397911.2019.1707226]
  35. Şahin E (2020b) Synthesis of enantiopure (S)-6-chlorochroman-4-ol using whole-cell Lactobacillus paracasei biotransformation. Chirality 32(3):400–406. https://doi.org/10.1002/chir.23177 [DOI: 10.1002/chir.23177]
  36. Şahin E (2023) Efficient bioreduction of 1-(furan-2-yl)ethanone into enantiomerically pure drug precursor by Lactobacillus paracasei BD101. Mol Catal 539:113037. https://doi.org/10.1016/j.mcat.2023.113037 [DOI: 10.1016/j.mcat.2023.113037]
  37. Şahin E, Dertli E (2017) Highly enantioselective production of chiral secondary alcohols with Candida zeylanoides as a new whole cell biocatalyst. Chem Biodivers 14(9):e1700121. https://doi.org/10.1002/cbdv.201700121 [DOI: 10.1002/cbdv.201700121]
  38. Şahin E, Serencam H, Dertli E (2019) Whole cell application of Lactobacillus paracasei BD101 to produce enantiomerically pure (S)-cyclohexyl(phenyl)methanol. Chirality 31(3):211–218. https://doi.org/10.1002/chir.23048 [DOI: 10.1002/chir.23048]
  39. Serrazanetti DI, Ndagijimana M, Sado-Kamdem SL, Corsetti A, Vogel RF, Ehrmann M, Guerzoni ME (2011) Acid stress-mediated metabolic shift in Lactobacillus sanfranciscensis LSCE1. Appl Environ Microbiol 77(8):2656–2666. https://doi.org/10.1128/aem.01826-10 [DOI: 10.1128/aem.01826-10]
  40. Shi Q, Wang G (2019) Study on the synthesis of 2-methylbutanoic acid. Flavour Frag Cosmet 6:4–6
  41. Soni SK, Goyal N, Gupta JK, Soni R (2011) Enhanced production of α-amylase from Bacillus subtilis subsp. Spizizenii in solid state fermentation by response surface methodology and its evaluation in the hydrolysis of Raw potato starch. Starch/Stärke 64(1):64–77. https://doi.org/10.1002/star.201100119 [DOI: 10.1002/star.201100119]
  42. Sonnet PE, Carney RL, Henrick C (1985) Synthesis of stereoisomers of 8-methyl-2-decanol and esters attractive to several Diabrotica Sp. J Chem Ecol 11(10):1371–1387. https://doi.org/10.1007/BF01012138 [DOI: 10.1007/BF01012138]
  43. Taggar R, Singh S, Bhalla V, Bhattacharyya MS, Sahoo DK (2021) Deciphering the antibacterial role of peptide from Bacillus subtilis subsp. Spizizenii Ba49 against Staphylococcus aureus. Front Microbiol 12:708712. https://doi.org/10.3389/fmicb.2021.708712 [DOI: 10.3389/fmicb.2021.708712]
  44. Tamura K, Stecher G, Kumar S, Battistuzzi FU (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38(7):3022–3027. https://doi.org/10.1093/molbev/msab120 [DOI: 10.1093/molbev/msab120]
  45. Thierry A, Richoux R, Kerjean J-R (2004a) Isovaleric acid is mainly produced by Propionibacterium freudenreichii in Swiss cheese. Int Dairy J 14(9):801–807. https://doi.org/10.1016/j.idairyj.2004.02.002 [DOI: 10.1016/j.idairyj.2004.02.002]
  46. Thierry A, Richoux R, Kerjean J-R, Lortal S (2004b) A simple screening method for isovaleric acid production by Propionibacterium freudenreichii in Swiss cheese. Int Dairy J 14(8):697–700. https://doi.org/10.1016/j.idairyj.2004.01.001 [DOI: 10.1016/j.idairyj.2004.01.001]
  47. Wang F, Wang Y, Ji J, Zhou Z, Yu J, Zhu H, Su Z, Zhang L, Zheng J (2015) Structural and functional analysis of the loading acyltransferase from avermectin modular polyketide synthase. Acs Chem Biol 10(4):1017–1025. https://doi.org/10.1021/cb500873k [DOI: 10.1021/cb500873k]
  48. White JD, Xu Q, Lee C-S, Valeriote FA (2004) Total synthesis and biological evaluation of (+)-kalkitoxin, a cytotoxic metabolite of the Cyanobacterium Lyngbya majuscula. Org Biomol Chem 2:2092–2102. https://doi.org/10.1039/B404205K [DOI: 10.1039/B404205K]
  49. Xie S, Liu J, Gu S, Chen X, Jiang H, Ding T (2020) Antifungal activity of volatile compounds produced by endophytic Bacillus subtilis DZSY21 against Curvularia Lunata. Ann Microbiol 70(1):2. https://doi.org/10.1186/s13213-020-01553-0 [DOI: 10.1186/s13213-020-01553-0]
  50. Xu M, Guo J, Li T, Zhang C, Peng X, Xing K, Qin S (2021) Antibiotic effects of volatiles produced by Bacillus tequilensis XK29 against the black spot disease caused by Ceratocystis fimbriata in postharvest sweet potato. J Agr Food Chem 69(44):13045–13054. https://doi.org/10.1021/acs.jafc.1c04585 [DOI: 10.1021/acs.jafc.1c04585]
  51. Ye L, Wang J-Y, Liu X-F, Guan Q, Dou N-X, Li J, Zhang Q, Gao Y-M, Wang M, Li J-S, Zhou B (2022) Nematicidal activity of volatile organic compounds produced by Bacillus altitudinis AMCC 1040 against Meloidogyne incognita. Arch Microbiol 204(8):521. https://doi.org/10.1007/s00203-022-03024-3 [DOI: 10.1007/s00203-022-03024-3]
  52. Zhang X (1987) N-butyl ether applied in Grignard reaction for production of 2-methylbutyric acid. Hebei Chem Eng Ind 3:5–7
  53. Zhang G, Wang H, Wang X (1992) Syntheses of 2-methylbutyric acid and esters as flavor compounds. Beijing Dly Chem 3:27–28
  54. Zhang AJ, Amalin D, Shirali S, Serrano MS, Franqui RA, Oliver JE, Klun JA, Aldrich JR, Meyerdirk DE, Lapointe SL (2004) Sex pheromone of the Pink hibiscus Mealybug, Maconellicoccus hirsutus, contains an unusual cyclobutanoid monoterpene. P Natl Acad Sci USA 101(26):9601–9606. https://doi.org/10.1073/pnas.0401298101 [DOI: 10.1073/pnas.0401298101]
  55. Zhao C, Zhu Z (1999) Study on synthesizing of 2-methylbutanoic acid by indirect electrooxidation. Electrochemistry 5(3):310–313. https://doi.org/10.13208/j.electrochem.1999.03.012 [DOI: 10.13208/j.electrochem.1999.03.012]
  56. Zhong H, Wang L, Zhao J-y, Xiao Z (2019) Fermentative production of chiral acetoin by wild-type Bacillus strains. Prep Biochem Biotech 50(2):116–122. https://doi.org/10.1080/10826068.2019.1666280 [DOI: 10.1080/10826068.2019.1666280]

Grants

  1. 31771946/National Natural Science Foundation of China

MeSH Term

Bacillus
Isoleucine
Stereoisomerism
Soil Microbiology
Glucose
Butyrates
Secondary Metabolism

Chemicals

Isoleucine
Glucose
Butyrates

Word Cloud

Created with Highcharts 10.0.0S-2-MBAL-isoleucine-2-methylbutanoicacidsynthesisBacillusspizizeniiATCC6633catabolismpurityprocessproductionvia32%glucoseEnantiopure[-2-MBA]high-valuechiralcompoundapplicationsfragrancespharmaceuticalsagrochemicalsHoweverconventionalchemicallacksstereoselectivityexistingbiosyntheticmethodssufferlowyieldreportnovelmicrobialusingefficienttargetedscreeningrhizosphericsoilisolatesBacillaceaestrainsdemonstratedsuperiorperformanceproducing367 g/L99enantiomericexcesseeoptimizedconditions45 °C8%inoculation5 g/L8 g/L5892%conversionefficiencyachievedsimplifiedpurificationrecovered6390%product97Mechanisticstudiessuggesteddepletiontriggeredaccumulationaligningstarvation-inducedsecondarymetabolismcost-effectiveeco-friendlyapproacheliminatesracemicseparationstepsharshreagentspositioningpromisingbiocatalystsustainableMicrobialenantiopureChiral

Similar Articles

Cited By