Chromosome-Level Genome Assembly and Comparative Transcriptome Analyses Identified Energy Conservation as a Key Strategy for Anadromous Adaptation of the Hilsa Shad, (Clupeiformes: Dorosomatidae).

Kishor Kumar Sarker, Liang Lu, Roland Nathan Mandal, Md Rashedur Rahman, Anirban Sarker, Mohammad Abdul Baki, Chenhong Li
Author Information
  1. Kishor Kumar Sarker: Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China.
  2. Liang Lu: Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China.
  3. Roland Nathan Mandal: Key Laboratory of Freshwater Aquatic Genetic Resources, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
  4. Md Rashedur Rahman: Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China.
  5. Anirban Sarker: Department of Zoology, Jagannath University, 9-10 Chittaranjan Ave, Dhaka 1100, Bangladesh.
  6. Mohammad Abdul Baki: Department of Zoology, Jagannath University, 9-10 Chittaranjan Ave, Dhaka 1100, Bangladesh.
  7. Chenhong Li: Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China. ORCID

Abstract

Anadromous migration toward riverine tributaries is often challenged by altered environmental cues, food scarcity, and energy demands, sometimes at the expense of life itself. (Clupeiformes: Dorosomatidae), the national fish of Bangladesh, an anadromous shad, offers a model for understanding the molecular mechanisms of migration. To this end, we present a chromosome-level genome of and compare its transcriptomic imprints from muscle and liver across environments to trace the physiological shifts driving the migration. We observed rapid expansion of gene families to facilitate efficient signaling and osmotic balance, as well as a substantial selection pressure in metabolism regulatory genes, potentially relevant to a highly anadromous fish. We detected 1298 and 252 differentially expressed transcripts between sea and freshwater in the liver and muscle of , respectively, reflecting habitat and organ-specific adaptations. Co-expression analysis led us to hypothesize that the strength required for breeding migration toward upstream rivers is fueled by muscle protein catabolism forming ubiquitin-proteasomal complexes. In the liver, we observed a group of genes promoting fatty acid (FA) synthesis significantly in the riverine habitat. Regulation of FADS2 and ELOVL2 in the river reasoned the natural abundance of LC-PUFAs with better energy utilization in . Moreover, active gluconeogenesis and reduced insulin signaling in the liver are possibly linked to glucose homeostasis, potentially induced by prolonged starvation during migration. These genomic resources will accelerate the future evolutionary and functional genomics studies of .

Keywords

References

  1. Behav Brain Res. 2003 Mar 18;140(1-2):1-47 [PMID: 12644276]
  2. Endocrinology. 2002 Jan;143(1):47-54 [PMID: 11751590]
  3. Hum Genet. 2016 May;135(5):477-483 [PMID: 26969327]
  4. Biotechniques. 2013 Jun;54(6):321-6 [PMID: 23758502]
  5. Nat Rev Neurosci. 2002 Feb;3(2):91-101 [PMID: 11836517]
  6. Sci Adv. 2024 May 24;10(21):eadm8713 [PMID: 38787947]
  7. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  8. Sci Rep. 2019 Nov 15;9(1):16888 [PMID: 31729437]
  9. J Physiol. 2019 Mar;597(6):1585-1603 [PMID: 30615194]
  10. BMC Res Notes. 2018 Dec 22;11(1):921 [PMID: 30577879]
  11. Metabolomics. 2020 Feb 25;16(3):30 [PMID: 32100135]
  12. Gene. 2024 Nov 30;928:148811 [PMID: 39094713]
  13. Nutrients. 2023 Jul 29;15(15): [PMID: 37571315]
  14. Sci Rep. 2021 Jun 2;11(1):11560 [PMID: 34078978]
  15. Mol Biol Evol. 2013 Apr;30(4):772-80 [PMID: 23329690]
  16. Science. 2017 Apr 7;356(6333):92-95 [PMID: 28336562]
  17. Int J Mol Sci. 2023 Jun 26;24(13): [PMID: 37445816]
  18. Genomics. 2020 Sep;112(5):3294-3305 [PMID: 32540494]
  19. Biomed Res Int. 2016;2016:4027437 [PMID: 27579313]
  20. Bioinformatics. 2014 May 1;30(9):1236-40 [PMID: 24451626]
  21. BMC Bioinformatics. 2011 Dec 22;12:491 [PMID: 22192575]
  22. J Pharmacol Toxicol Methods. 2009 Jan-Feb;59(1):44-9 [PMID: 19028589]
  23. Arch Tierernahr. 1996;49(1):5-22 [PMID: 8766969]
  24. Sci Rep. 2020 Mar 27;10(1):5659 [PMID: 32221377]
  25. Mol Biol Evol. 2007 Aug;24(8):1586-91 [PMID: 17483113]
  26. Methods. 2012 Nov;58(3):268-76 [PMID: 22652625]
  27. BMC Bioinformatics. 2018 Nov 29;19(1):460 [PMID: 30497373]
  28. Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9451-9457 [PMID: 32300014]
  29. Sci Rep. 2020 Sep 23;10(1):15547 [PMID: 32968090]
  30. Sci Rep. 2019 Dec 17;9(1):19306 [PMID: 31848425]
  31. Conserv Physiol. 2022 Jun 17;10(1):coac037 [PMID: 35733620]
  32. Bioinformatics. 2020 Apr 1;36(7):2253-2255 [PMID: 31778144]
  33. iScience. 2021 Nov 09;24(12):103409 [PMID: 34849471]
  34. F1000Res. 2019 Mar 22;8:320 [PMID: 31602298]
  35. Antonie Van Leeuwenhoek. 1973;39(3):545-65 [PMID: 4148026]
  36. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  37. Sci Rep. 2019 Nov 11;9(1):16511 [PMID: 31712633]
  38. Biol Reprod. 2004 Sep;71(3):749-60 [PMID: 15115721]
  39. Genome Biol. 2019 Nov 14;20(1):238 [PMID: 31727128]
  40. Biochim Biophys Acta. 2014 Jan;1842(1):99-106 [PMID: 24184715]
  41. Mol Biol Evol. 2015 Jan;32(1):268-74 [PMID: 25371430]
  42. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8622-7 [PMID: 9238027]
  43. Mol Biol Rep. 2022 Jan;49(1):385-392 [PMID: 34716505]
  44. Comp Biochem Physiol B Biochem Mol Biol. 2004 Nov;139(3):383-400 [PMID: 15544963]
  45. PLoS One. 2012;7(2):e31950 [PMID: 22384110]
  46. Bioinformatics. 2009 Aug 1;25(15):1972-3 [PMID: 19505945]
  47. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  48. Cell Rep. 2021 Feb 9;34(6):108738 [PMID: 33567271]
  49. PLoS One. 2013;8(2):e56485 [PMID: 23431379]
  50. Sci Rep. 2022 Dec 5;12(1):20980 [PMID: 36470973]
  51. Bioinformatics. 2006 May 15;22(10):1269-71 [PMID: 16543274]
  52. Nat Protoc. 2013 Aug;8(8):1494-512 [PMID: 23845962]
  53. Prog Lipid Res. 2021 Apr;82:101095 [PMID: 33741387]
  54. Genome Biol. 2015 Dec 01;16:259 [PMID: 26619908]
  55. Prog Lipid Res. 2020 Nov;80:101064 [PMID: 33010278]
  56. Nat Commun. 2021 Jan 4;12(1):60 [PMID: 33397900]
  57. Cell Rep. 2018 Jun 5;23(10):2852-2863 [PMID: 29874573]
  58. Comp Biochem Physiol Part D Genomics Proteomics. 2022 Jun;42:100994 [PMID: 35533546]

Grants

  1. 19410740500/Science and Technology Commission of Shanghai Municipality

MeSH Term

Animals
Energy Metabolism
Fishes
Transcriptome
Liver
Genome
Gene Expression Profiling
Chromosomes
Adaptation, Physiological
Animal Migration

Word Cloud

Created with Highcharts 10.0.0migrationlivermuscleAnadromoustowardriverineenergyClupeiformes:DorosomatidaefishanadromousshadgenomeobservedsignalinggenespotentiallyhabitatcatabolismELOVL2tributariesoftenchallengedalteredenvironmentalcuesfoodscarcitydemandssometimesexpenselifenationalBangladeshoffersmodelunderstandingmolecularmechanismsendpresentchromosome-levelcomparetranscriptomicimprintsacrossenvironmentstracephysiologicalshiftsdrivingrapidexpansiongenefamiliesfacilitateefficientosmoticbalancewellsubstantialselectionpressuremetabolismregulatoryrelevanthighlydetected1298252differentiallyexpressedtranscriptsseafreshwaterrespectivelyreflectingorgan-specificadaptationsCo-expressionanalysisledushypothesizestrengthrequiredbreedingupstreamriversfueledproteinformingubiquitin-proteasomalcomplexesgrouppromotingfattyacidFAsynthesissignificantlyRegulationFADS2riverreasonednaturalabundanceLC-PUFAsbetterutilizationMoreoveractivegluconeogenesisreducedinsulinpossiblylinkedglucosehomeostasisinducedprolongedstarvationgenomicresourceswillacceleratefutureevolutionaryfunctionalgenomicsstudiesChromosome-LevelGenomeAssemblyComparativeTranscriptomeAnalysesIdentifiedEnergyConservationKeyStrategyAdaptationHilsaShadLCPUFAhilsa

Similar Articles

Cited By