Integrating Physical Principles with Machine Learning for Predicting Field-Enhanced Catalysis.

Runze Zhao, Qiang Li, Jiaqi Yang, Cheng Zhu, Fanglin Che
Author Information
  1. Runze Zhao: Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States.
  2. Qiang Li: Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States. ORCID
  3. Jiaqi Yang: Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States.
  4. Cheng Zhu: Engineering Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States. ORCID
  5. Fanglin Che: Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States. ORCID

Abstract

Field-dipole interactions can tune the energetics of polarized species over catalyst nanoparticles (NPs) for sustainable technologies. This can boost the energy efficiency of desired reactions by several orders of magnitude compared with conventional heating. However, the local electric field accumulation over the NPs sharp points and field-dependent adsorption over NPs are not well studied, and the associated computational expense is immense. To address this challenge, we introduce an innovative approach that combines density functional theory (DFT) calculations, DFT-based CO vibrational Stark effects, and physics principles enhanced machine learning (ML). This approach enables precise mapping of local electric fields and integrates the physical principles of the first-order Taylor expansion as a training input into the ML model for predicting field-dependent adsorption, facilitating rapid prediction of field-dependent adsorption energetics with acceptable accuracies, particularly when training data sets are limited. Our methodology reveals the dominant roles of external electric field (EEF), the generalized coordination number (GCN), and NP size in determining the local electric field (LEF) strength. Low-coordinated sites and small NPs size enhanced the LEF by about 4-fold compared to the flat surfaces. Using ML models, we can predict the field-driven adsorption energetics at a given adsorption site of the NPs with high accuracy and efficiency. The integration of modeling and ML algorithms offers exceptional possibilities to facilitate catalyst development and create the opportunity to enter a new paradigm in field-enhanced catalysis design based on fundamentals rather than trial and error.

References

  1. Sci Data. 2023 May 20;10(1):308 [PMID: 37210383]
  2. Nature. 2016 Sep 15;537(7620):382-386 [PMID: 27487220]
  3. Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186 [PMID: 9984901]
  4. Philos Trans A Math Phys Eng Sci. 2016 Apr 13;374(2065):20150202 [PMID: 26953178]
  5. J Am Chem Soc. 2022 Dec 7;144(48):22113-22127 [PMID: 36383403]
  6. Phys Rev B Condens Matter. 1994 Dec 15;50(24):17953-17979 [PMID: 9976227]
  7. J Am Chem Soc. 2021 Apr 28;143(16):6152-6164 [PMID: 33851840]
  8. J Chem Phys. 2016 Nov 7;145(17):174111 [PMID: 27825233]
  9. RSC Adv. 2019 Oct 29;9(60):34793-34803 [PMID: 35530691]
  10. J Phys Chem Lett. 2022 Jun 9;13(22):4905-4911 [PMID: 35623089]
  11. Chem Sci. 2020 Jan 14;11(6):1456-1468 [PMID: 32180922]
  12. Nat Commun. 2023 Nov 28;14(1):7795 [PMID: 38016999]
  13. J Phys Chem A. 2009 Apr 23;113(16):4125-33 [PMID: 19278213]
  14. Nature. 2016 Mar 3;531(7592):88-91 [PMID: 26935697]
  15. Science. 2019 Apr 26;364(6438): [PMID: 31023896]
  16. J Am Chem Soc. 2014 May 28;136(21):7734-9 [PMID: 24803093]
  17. ACS Cent Sci. 2020 Feb 26;6(2):304-311 [PMID: 32123749]
  18. Science. 2014 Dec 19;346(6216):1510-4 [PMID: 25525245]
  19. Nat Chem. 2015 May;7(5):403-10 [PMID: 25901818]
  20. ACS Appl Mater Interfaces. 2023 May 17;15(19):23255-23264 [PMID: 37134186]
  21. J Am Chem Soc. 2023 Apr 5;: [PMID: 37017464]
  22. Phys Chem Chem Phys. 2014 Feb 14;16(6):2399-410 [PMID: 24352204]
  23. Sci Rep. 2019 Jan 18;9(1):222 [PMID: 30659205]
  24. Annu Rev Biochem. 2017 Jun 20;86:387-415 [PMID: 28375745]
  25. Phys Rev B Condens Matter. 1992 Dec 15;46(24):16067-16080 [PMID: 10003746]
  26. Nano Lett. 2022 Mar 9;22(5):1963-1970 [PMID: 35166553]
  27. JACS Au. 2022 Jun 02;2(6):1338-1349 [PMID: 35783174]
  28. Sci Bull (Beijing). 2021 Jan 15;66(1):62-68 [PMID: 36654315]
  29. Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 [PMID: 10062328]
  30. ACS Nano. 2020 Apr 28;14(4):4839-4848 [PMID: 32283008]
  31. Adv Sci (Weinh). 2023 Jul;10(20):e2207644 [PMID: 37102632]

Word Cloud

Created with Highcharts 10.0.0NPsadsorptionelectricMLcanenergeticslocalfieldfield-dependentcatalystefficiencycomparedapproachprinciplesenhancedtrainingsizeLEFField-dipoleinteractionstunepolarizedspeciesnanoparticlessustainabletechnologiesboostenergydesiredreactionsseveralordersmagnitudeconventionalheatingHoweveraccumulationsharppointswellstudiedassociatedcomputationalexpenseimmenseaddresschallengeintroduceinnovativecombinesdensityfunctionaltheoryDFTcalculationsDFT-basedCOvibrationalStarkeffectsphysicsmachinelearningenablesprecisemappingfieldsintegratesphysicalfirst-orderTaylorexpansioninputmodelpredictingfacilitatingrapidpredictionacceptableaccuraciesparticularlydatasetslimitedmethodologyrevealsdominantrolesexternalEEFgeneralizedcoordinationnumberGCNNPdeterminingstrengthLow-coordinatedsitessmall4-foldflatsurfacesUsingmodelspredictfield-drivengivensitehighaccuracyintegrationmodelingalgorithmsoffersexceptionalpossibilitiesfacilitatedevelopmentcreateopportunityenternewparadigmfield-enhancedcatalysisdesignbasedfundamentalsrathertrialerrorIntegratingPhysicalPrinciplesMachineLearningPredictingField-EnhancedCatalysis

Similar Articles

Cited By