Whole exome sequencing as a screening tool in dogs: A pilot study.

Fréderique Boeykens, Evelien Bogaerts, Liesbeth Vossaert, Luc Peelman, Filip Van Nieuwerburgh, Jimmy H Saunders, Bart J G Broeckx
Author Information
  1. Fréderique Boeykens: Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
  2. Evelien Bogaerts: Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
  3. Liesbeth Vossaert: Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX United States.
  4. Luc Peelman: Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
  5. Filip Van Nieuwerburgh: Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium.
  6. Jimmy H Saunders: Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
  7. Bart J G Broeckx: Laboratory of Animal Genetics, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.

Abstract

Background: Whole-exome sequencing (WES) is used to selectively sequence all exons of protein-coding genes. WES is considered as a cost-effective and direct approach for identifying phenotype-associated variants in protein-coding regions and is as such situated between the traditional Sanger sequencing and whole genome sequencing (WGS). While WES is already widely used as a clinical tool in human and medical genetics, its use in veterinary medicine is currently restricted to research purposes. In this article, we aimed to provide baseline performance characteristics of a WES design to assess its suitability with future applications in veterinary clinical genetics in mind.
Methods: To assess the potential of WES in a clinical setting for dogs, 49 canine samples underwent capture, sequencing and analysis for the presence of 352 known phenotype-associated variants. The sequencing performance was compared for three types of variants, based on their size and location: single nucleotide variants (SNVs) inside exons, larger indel variants (≤20 bp) inside exons and intronic variants.
Results: On average, 85 % and 82 % of the exonic SNPs and larger variants were sequenced at a sequencing depth of ≥ 10x in the 49 samples, respectively. In the best performing sample, 94 % of the exonic SNPs were covered at least 10x, whereas in the worst performing sample, still 71 % of the exonic SNPs had an average sequencing depth of more than 10x.
Conclusion: To our knowledge, this is the first report that describes the performance of a research-intended WES design if it would be used in clinical genetics. This study found that WES demonstrated high efficacy in detecting variants located within target regions, including those that were not initially included in the design. However, the performance varied across different variants. The next steps would be the development of improved designs and settings to ameliorate the results.

Keywords

References

  1. Eur J Hum Genet. 2019 Oct;27(10):1561-1568 [PMID: 31160700]
  2. PLoS Genet. 2019 Mar 19;15(3):e1007873 [PMID: 30889179]
  3. Vet J. 2011 Aug;189(2):141-6 [PMID: 21757380]
  4. JAMA. 2014 Nov 12;312(18):1880-7 [PMID: 25326637]
  5. Vet J. 2013 Aug;197(2):457-60 [PMID: 23911791]
  6. Front Vet Sci. 2024 Dec 05;11:1497817 [PMID: 39703406]
  7. Mamm Genome. 2000 Jan;11(1):24-30 [PMID: 10602988]
  8. Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14775-80 [PMID: 20679209]
  9. PLoS Genet. 2016 Dec 29;12(12):e1006482 [PMID: 28033318]
  10. Am J Hum Genet. 2012 Oct 5;91(4):597-607 [PMID: 23040492]
  11. J Hered. 2007;98(5):468-73 [PMID: 17519392]
  12. PLoS One. 2017 Oct 3;12(10):e0185944 [PMID: 28973042]
  13. Prenat Diagn. 2022 May;42(6):762-774 [PMID: 34643287]
  14. Xenobiotica. 2004 Sep;34(9):835-46 [PMID: 15742977]
  15. Vet Clin North Am Small Anim Pract. 2015 Nov;45(6):1159-82, v [PMID: 26277300]
  16. Curr Protoc Mol Biol. 2013 Jan;Chapter 22:Unit 22.1. [PMID: 23288464]
  17. Nat Genet. 2008 Oct;40(10):1235-9 [PMID: 18806795]
  18. Genes (Basel). 2020 Nov 27;11(12): [PMID: 33261176]
  19. Theriogenology. 2020 Jul 1;150:20-26 [PMID: 32000992]
  20. Domest Anim Endocrinol. 2018 Oct;65:1-8 [PMID: 29777899]
  21. J Hered. 2003 Jan-Feb;94(1):69-73 [PMID: 12692165]
  22. Int J Mol Sci. 2023 Feb 06;24(4): [PMID: 36834603]
  23. Bioinformatics. 2010 Mar 1;26(5):589-95 [PMID: 20080505]
  24. Genome Biol. 2011 Sep 14;12(9):R86 [PMID: 21917142]
  25. Canine Genet Epidemiol. 2017 Oct 23;4:12 [PMID: 29085643]
  26. Sci Rep. 2014 Jul 07;4:5597 [PMID: 24998260]
  27. Anim Genet. 2025 Apr;56(2):e70003 [PMID: 40012122]
  28. JAMA. 2014 Nov 12;312(18):1870-9 [PMID: 25326635]
  29. Eur J Hum Genet. 2017 Feb;25(2):176-182 [PMID: 27848944]
  30. Chem Res Toxicol. 2011 Jun 20;24(6):794-6 [PMID: 21557537]
  31. Hum Genet. 2016 Mar;135(3):359-62 [PMID: 26742503]
  32. Pharmacogenetics. 2001 Nov;11(8):727-33 [PMID: 11692082]
  33. Anim Genet. 2020 Feb;51(1):78-86 [PMID: 31802524]
  34. Mamm Genome. 2002 Jul;13(7):380-7 [PMID: 12140685]
  35. Am J Hum Genet. 2010 May 14;86(5):749-64 [PMID: 20466091]
  36. Ann N Y Acad Sci. 2016 Feb;1366(1):49-60 [PMID: 26250888]
  37. Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2794-9 [PMID: 19188595]
  38. Nature. 2018 Jul;559(7715):470-472 [PMID: 30046086]
  39. PLoS One. 2013 Aug 28;8(8):e72122 [PMID: 24015210]
  40. Invest Ophthalmol Vis Sci. 2010 Sep;51(9):4716-21 [PMID: 20375329]
  41. PLoS Genet. 2020 Mar 9;16(3):e1008659 [PMID: 32150541]
  42. Sci Transl Med. 2011 Jan 12;3(65):65ra4 [PMID: 21228398]
  43. Am J Hum Genet. 2019 Oct 3;105(4):719-733 [PMID: 31564432]
  44. Front Oncol. 2019 Sep 04;9:851 [PMID: 31552176]
  45. J Vet Intern Med. 2017 Jan;31(1):149-157 [PMID: 28008682]
  46. BMC Bioinformatics. 2023 Aug 1;24(1):305 [PMID: 37528412]
  47. Genomics. 2006 Nov;88(5):551-63 [PMID: 16938425]
  48. Sci Rep. 2015 Aug 03;5:12810 [PMID: 26235384]
  49. Sci Rep. 2019 Feb 11;9(1):1784 [PMID: 30741997]
  50. G3 (Bethesda). 2015 Jul 02;5(8):1543-50 [PMID: 26139844]
  51. Nat Rev Genet. 2019 Feb;20(2):109-127 [PMID: 30479381]
  52. PLoS One. 2013;8(3):e60149 [PMID: 23527306]
  53. Anim Genet. 2018 Aug;49(4):284-290 [PMID: 29932470]
  54. Front Vet Sci. 2024 Feb 02;11:1327081 [PMID: 38371598]
  55. J Vet Intern Med. 2006 Jul-Aug;20(4):927-32 [PMID: 16955818]
  56. PLoS Genet. 2019 May 16;15(5):e1008102 [PMID: 31095560]
  57. Hum Mutat. 2012 May;33(5):884-6 [PMID: 22457028]
  58. BMC Vet Res. 2025 Feb 22;21(1):89 [PMID: 39987142]
  59. PLoS Genet. 2012;8(8):e1002849 [PMID: 22876193]
  60. Physiol Rev. 2016 Jan;96(1):253-305 [PMID: 26676145]
  61. J Vet Intern Med. 2014 Mar-Apr;28(2):515-21 [PMID: 24524809]
  62. Mamm Genome. 2004 Oct;15(10):798-808 [PMID: 15520882]
  63. Neuromuscul Disord. 2018 Jul;28(7):597-605 [PMID: 29934119]
  64. Dis Model Mech. 2016 Jan;9(1):25-38 [PMID: 26747866]
  65. Nature. 2014 Apr 24;508(7497):469-76 [PMID: 24759409]
  66. PLoS Genet. 2018 Apr 30;14(4):e1007361 [PMID: 29708978]
  67. Anim Genet. 2013 Aug;44(4):425-31 [PMID: 23384345]
  68. Nat Genet. 2010 Jan;42(1):30-5 [PMID: 19915526]
  69. BMC Genomics. 2014 Jul 03;15:550 [PMID: 24988888]
  70. N Engl J Med. 2013 Oct 17;369(16):1502-11 [PMID: 24088041]
  71. Neurobiol Dis. 2006 Jan;21(1):35-42 [PMID: 16026996]
  72. Eur J Hum Genet. 2016 Jan;24(1):2-5 [PMID: 26508566]
  73. J Biol Chem. 1998 Jun 19;273(25):15866-71 [PMID: 9624188]
  74. Nat Rev Genet. 2011 Aug 18;12(9):628-40 [PMID: 21850043]

Word Cloud

Created with Highcharts 10.0.0variantssequencingWESclinicalgeneticsperformanceusedexonstooldesignexonicSNPsprotein-codingphenotype-associatedregionsveterinaryassess49samplesinsidelargeraveragedepthperformingsample10xstudyWholeVeterinaryBackground:Whole-exomeselectivelysequencegenesconsideredcost-effectivedirectapproachidentifyingsituatedtraditionalSangerwholegenomeWGSalreadywidelyhumanmedicalusemedicinecurrentlyrestrictedresearchpurposesarticleaimedprovidebaselinecharacteristicssuitabilityfutureapplicationsmindMethods:potentialsettingdogscanineunderwentcaptureanalysispresence352knowncomparedthreetypesbasedsizelocation:singlenucleotideSNVsindel≤20 bpintronicResults:85 %82 %sequenced≥ 10xrespectivelybest94 %coveredleastwhereasworststill71 %Conclusion:knowledgefirstreportdescribesresearch-intendedfounddemonstratedhighefficacydetectinglocatedwithintargetincludinginitiallyincludedHowevervariedacrossdifferentnextstepsdevelopmentimproveddesignssettingsameliorateresultsexomescreeningdogs:pilotCanineDiagnosticGeneticScreeningVariantdetectiondiagnosticsExomeSequencing

Similar Articles

Cited By