Newcomb-Benford number law and ecological processes.

Robert D Davic
Author Information
  1. Robert D Davic: State of Ohio Environmental Protection Agency, Columbus, Ohio, United States of America. ORCID

Abstract

The Newcomb-Benford number law has found applications in the natural and social sciences for decades, with limited ecological attention. The aim of this communication is to highlight a statistical correspondence between the first significant digit frequencies of the Benford probability distribution and ecological systems in a balanced state of dynamic equilibrium. Analytical methods, including multidimensional Euclidean distance, Cohen-W effect size, Kossovsky sum of squared deviations (SSD), and Pearson residuals are presented to facilitate the identification of this canonical representation across multiple levels of ecological organization and scale. Case studies reveal novel applications of the Benford distribution for detecting impending state transitions in marginally stable systems, as well as temporal and spatial divergence of ecological information through the measurement of Kullback-Leibler relative entropy. Widespread documentation of the leading digit phenomenon is expected as ecologists revisit empirical datasets and formalize sampling protocols for its detection. The conversion of randomly collected sets of arithmetic data into logarithmic probabilities of first significant digits presents unique opportunities to advance our understanding of ecological processes related with stability, complexity, and maturity.

References

  1. J Theor Biol. 2007 Nov 7;249(1):124-39 [PMID: 17720204]
  2. Sci Rep. 2023 Oct 5;13(1):16777 [PMID: 37798344]
  3. PLoS One. 2012;7(5):e36624 [PMID: 22629319]
  4. Q Rev Biophys. 1971 Aug;4(2):107-48 [PMID: 4257403]
  5. PLoS One. 2025 Mar 28;20(3):e0310205 [PMID: 40153682]
  6. Nature. 2007 Oct 4;449(7162):599-602 [PMID: 17914396]
  7. F1000Res. 2016 Aug 25;5:2074 [PMID: 27928497]
  8. Anesth Analg. 2014 Jan;118(1):183-91 [PMID: 24356167]
  9. PLoS One. 2023 Jul 12;18(7):e0285945 [PMID: 37437089]
  10. Entropy (Basel). 2020 Jul 27;22(8): [PMID: 33286591]
  11. PLoS One. 2015 Jun 01;10(6):e0129161 [PMID: 26030809]
  12. Philos Trans R Soc Lond B Biol Sci. 2002 May 29;357(1421):619-26 [PMID: 12079523]
  13. Front Physiol. 2016 Jan 11;6:390 [PMID: 26793114]
  14. Comput Biol Chem. 2003 Dec;27(6):523-30 [PMID: 14667780]
  15. PLoS One. 2018 Jul 16;13(7):e0200382 [PMID: 30011317]
  16. Science. 2007 Jul 6;317(5834):58-62 [PMID: 17615333]
  17. J Exp Biol. 2005 May;208(Pt 9):1749-69 [PMID: 15855405]
  18. Glob Chang Biol. 2014 Jun;20(6):1751-9 [PMID: 24664864]
  19. Trends Ecol Evol. 2014 Jul;29(7):384-9 [PMID: 24863182]

MeSH Term

Ecology
Probability
Ecological and Environmental Phenomena
Ecosystem
Entropy

Word Cloud

Created with Highcharts 10.0.0ecologicalNewcomb-BenfordnumberlawapplicationsfirstsignificantdigitBenforddistributionsystemsstateprocessesfoundnaturalsocialsciencesdecadeslimitedattentionaimcommunicationhighlightstatisticalcorrespondencefrequenciesprobabilitybalanceddynamicequilibriumAnalyticalmethodsincludingmultidimensionalEuclideandistanceCohen-WeffectsizeKossovskysumsquareddeviationsSSDPearsonresidualspresentedfacilitateidentificationcanonicalrepresentationacrossmultiplelevelsorganizationscaleCasestudiesrevealnoveldetectingimpendingtransitionsmarginallystablewelltemporalspatialdivergenceinformationmeasurementKullback-LeiblerrelativeentropyWidespreaddocumentationleadingphenomenonexpectedecologistsrevisitempiricaldatasetsformalizesamplingprotocolsdetectionconversionrandomlycollectedsetsarithmeticdatalogarithmicprobabilitiesdigitspresentsuniqueopportunitiesadvanceunderstandingrelatedstabilitycomplexitymaturity

Similar Articles

Cited By (1)