Pamoic acid and carbenoxolone specifically inhibit CRISPR/Cas9 in bacteria, mammalian cells, and mice in a DNA topology-specific manner.

Yuxuan Zhang, Wentao Zou, Yueyang Zhou, Jiaqi Chen, Youtian Hu, Fang Wu
Author Information
  1. Yuxuan Zhang: Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
  2. Wentao Zou: Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
  3. Yueyang Zhou: Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
  4. Jiaqi Chen: Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
  5. Youtian Hu: Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
  6. Fang Wu: Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China. fang.wu@sjtu.edu.cn.

Abstract

BACKGROUND: Regulation of the target DNA cleavage activity of CRISPR/Cas has naturally evolved in a few bacteria or bacteriophages but is lacking in higher species. Thus, identification of bioactive agents and mechanisms that can suppress the activity of Cas9 is urgently needed to rebalance this new genetic pressure.
RESULTS: Here, we identify four specific inhibitors of Cas9 by screening 4607 compounds that could inhibit the endonuclease activity of Cas9 via three distinct mechanisms: substrate-competitive and protospacer adjacent motif (PAM)-binding site-occupation; substrate-targeting; and sgRNA-targeting mechanisms. These inhibitors inhibit, in a dose-dependent manner, the activity of Streptococcus pyogenes Cas9 (SpyCas9), Staphylococcus aureus Cas9 (SauCas9), and SpyCas9 nickase-based BE4 base editors in in vitro purified enzyme assays, bacteria, mammalian cells, and mice. Importantly, pamoic acid and carbenoxolone show DNA-topology selectivity and preferentially inhibit the cleavage of linear DNA compared with a supercoiled plasmid.
CONCLUSIONS: These pharmacologically selective inhibitors and new mechanisms offer new tools for controlling the DNA-topology selective activity of Cas9.

Keywords

References

  1. Nat Biotechnol. 2013 Sep;31(9):827-32 [PMID: 23873081]
  2. Protein Cell. 2019 Nov;10(11):832-839 [PMID: 30767107]
  3. J Clin Oncol. 1986 Mar;4(3):425-39 [PMID: 3005521]
  4. Nature. 2007 Nov 29;450(7170):712-6 [PMID: 18046409]
  5. Med Res Rev. 1997 Jan;17(1):69-137 [PMID: 8979249]
  6. J Biotechnol. 2018 Oct 20;284:91-101 [PMID: 30142414]
  7. Drugs. 2010 May 7;70(7):859-86 [PMID: 20426497]
  8. Cancer Res. 2011 Feb 15;71(4):1418-30 [PMID: 21159662]
  9. Cell Res. 2018 Apr;28(4):491-493 [PMID: 29531313]
  10. Nucleic Acids Res. 2014 Dec 16;42(22):e168 [PMID: 25300484]
  11. Nat Commun. 2019 Mar 08;10(1):1136 [PMID: 30850590]
  12. Cell. 2019 May 2;177(4):1067-1079.e19 [PMID: 31051099]
  13. Cell. 2015 Aug 27;162(5):1113-26 [PMID: 26317473]
  14. Ann Clin Microbiol Antimicrob. 2024 Jul 4;23(1):60 [PMID: 38965559]
  15. Mitochondrion. 2005 Aug;5(4):272-81 [PMID: 16050990]
  16. Nature. 2017 Jun 15;546(7658):436-439 [PMID: 28448066]
  17. Nat Rev Drug Discov. 2022 Mar;21(3):181-200 [PMID: 35042991]
  18. Vitam Horm. 2000;58:121-48 [PMID: 10668397]
  19. Proc Natl Acad Sci U S A. 2020 Mar 17;117(11):5853-5860 [PMID: 32123105]
  20. Nature. 2014 Sep 25;513(7519):569-73 [PMID: 25079318]
  21. Curr Opin Struct Biol. 2020 Jun;62:166-174 [PMID: 32070859]
  22. Nat Biotechnol. 2015 Feb;33(2):187-197 [PMID: 25513782]
  23. Br J Pharmacol. 2004 Jun;142(3):485-94 [PMID: 15148258]
  24. Nat Struct Mol Biol. 2021 Mar;28(3):319-325 [PMID: 33674802]
  25. Adv Sci (Weinh). 2019 Apr 20;6(12):1900386 [PMID: 31380173]
  26. Acta Virol. 1989 Aug;33(4):305-13 [PMID: 2574936]
  27. Mol Cell. 2023 Oct 5;83(19):3533-3545.e5 [PMID: 37802026]
  28. ACS Chem Biol. 2013 Jan 18;8(1):82-95 [PMID: 23259582]
  29. mBio. 2017 Nov 7;8(6): [PMID: 29114029]
  30. Cell Chem Biol. 2020 Dec 17;27(12):1483-1499.e9 [PMID: 33186540]
  31. Biochemistry. 1980 Sep 2;19(18):4299-303 [PMID: 6158332]
  32. Genome Biol. 2020 Feb 26;21(1):51 [PMID: 32102684]
  33. Nucleic Acids Res. 2015 Oct 30;43(19):9379-92 [PMID: 26429972]
  34. J Mol Biol. 2023 Apr 1;435(7):168041 [PMID: 36893938]
  35. Dev Dyn. 2014 Dec;243(12):1632-6 [PMID: 25160973]
  36. J Biol Chem. 2000 Dec 15;275(50):39435-43 [PMID: 10993883]
  37. Science. 2011 Nov 18;334(6058):986-90 [PMID: 22096201]
  38. Eur J Cancer Clin Oncol. 1985 Nov;21(11):1307-13 [PMID: 3865777]
  39. Science. 2020 Apr 17;368(6488):290-296 [PMID: 32217751]
  40. Cancer Chemother Pharmacol. 1992;30(2):123-5 [PMID: 1318169]
  41. Nutrients. 2014 Nov 04;6(11):4856-71 [PMID: 25375630]
  42. Nat Methods. 2018 Nov;15(11):924-927 [PMID: 30377362]
  43. Nat Med. 2017 Sep;23(9):1095-1101 [PMID: 28759051]
  44. Nat Biotechnol. 2018 Oct;36(9):843-846 [PMID: 29813047]
  45. ACS Chem Biol. 2013 Apr 19;8(4):789-95 [PMID: 23363022]
  46. Nat Rev Cancer. 2009 May;9(5):338-50 [PMID: 19377506]
  47. Angew Chem Int Ed Engl. 2019 Sep 2;58(36):12404-12408 [PMID: 31318118]
  48. Curr Protoc Immunol. 2019 Sep;126(1):e83 [PMID: 31483106]
  49. FEBS Open Bio. 2015 Jun 12;5:522-7 [PMID: 26155460]
  50. J Mol Biol. 2004 Jan 9;335(2):583-93 [PMID: 14672665]
  51. Carcinogenesis. 1997 Dec;18(12):2441-5 [PMID: 9450493]
  52. Mol Ther Nucleic Acids. 2015 Nov 17;4:e264 [PMID: 26575098]
  53. Gene Ther. 1999 Jul;6(7):1258-66 [PMID: 10455434]
  54. Nucleic Acids Res. 2018 Jul 2;46(W1):W242-W245 [PMID: 29762716]
  55. FASEB J. 2008 Mar;22(3):659-61 [PMID: 17942826]
  56. Mutat Res Rev Mutat Res. 2018 Jan - Mar;775:51-62 [PMID: 29555029]
  57. Microb Genom. 2015 Oct 30;1(4):e000033 [PMID: 28348817]
  58. Br J Haematol. 1998 Jan;100(1):142-6 [PMID: 9450803]
  59. Chemosphere. 2022 Dec;308(Pt 2):136237 [PMID: 36049636]
  60. J Med Chem. 2017 Mar 23;60(6):2165-2168 [PMID: 28244745]
  61. Cell. 2014 Feb 27;156(5):935-49 [PMID: 24529477]
  62. Appl Environ Microbiol. 2015 Apr;81(7):2506-14 [PMID: 25636838]
  63. Life Sci. 2020 Sep 15;257:118116 [PMID: 32702447]
  64. Nucleic Acids Res. 2013 Dec;41(22):10630-40 [PMID: 24038465]
  65. Science. 2014 Mar 14;343(6176):1247997 [PMID: 24505130]
  66. Mol Cell. 2022 Nov 3;82(21):4160-4175.e6 [PMID: 36272409]
  67. Eur Urol Focus. 2022 Nov;8(6):1687-1695 [PMID: 35279408]
  68. Methods Mol Biol. 2018;1772:151-169 [PMID: 29754227]
  69. Nucleic Acids Res. 2024 Jul 8;52(12):6994-7011 [PMID: 38828775]
  70. Clin Cancer Res. 2004 Nov 15;10(22):7757-63 [PMID: 15570010]
  71. Anal Biochem. 2010 May 1;400(1):148-50 [PMID: 20085743]
  72. Nat Biotechnol. 2022 Mar;40(3):402-410 [PMID: 34608327]
  73. J Med Chem. 2003 Aug 14;46(17):3563-4 [PMID: 12904059]
  74. Nat Commun. 2019 Jan 3;10(1):45 [PMID: 30604748]
  75. Environ Mol Mutagen. 2004;43(4):250-7 [PMID: 15141364]
  76. J Antimicrob Chemother. 2006 Sep;58(3):627-31 [PMID: 16840427]
  77. Sci Adv. 2017 Jul 12;3(7):e1701620 [PMID: 28706995]
  78. Nat Biotechnol. 2019 Mar;37(3):224-226 [PMID: 30809026]
  79. Nat Catal. 2023 Oct;6(10):969-977 [PMID: 38348449]
  80. Nat Biotechnol. 2014 Jun;32(6):551-3 [PMID: 24681508]
  81. Cell Rep. 2019 Nov 26;29(9):2579-2589.e4 [PMID: 31775029]
  82. Biochim Biophys Acta. 2005 May 25;1723(1-3):114-23 [PMID: 15780971]
  83. Nat Genet. 2020 Jul;52(7):662-668 [PMID: 32424350]
  84. FASEB J. 2017 Apr;31(4):1382-1397 [PMID: 28034848]
  85. Sci Rep. 2016 Jun 09;6:27594 [PMID: 27277195]
  86. Virus Res. 2019 Apr 2;263:102-111 [PMID: 30639191]
  87. Science. 2012 Aug 17;337(6096):816-21 [PMID: 22745249]
  88. Nature. 2022 Mar;603(7900):343-347 [PMID: 35236982]
  89. Drugs. 2021 Jun;81(8):907-921 [PMID: 33929716]
  90. Nat Cell Biol. 2022 Dec;24(12):1766-1775 [PMID: 36396978]
  91. Nat Biotechnol. 2013 Sep;31(9):822-6 [PMID: 23792628]
  92. PLoS One. 2014 May 29;9(5):e98186 [PMID: 24873830]
  93. J Mol Biol. 2017 Jan 20;429(2):177-191 [PMID: 27916599]
  94. Nat Protoc. 2013 Nov;8(11):2281-2308 [PMID: 24157548]
  95. Cancer Res. 2005 Oct 1;65(19):9047-55 [PMID: 16204079]
  96. J Med Chem. 2019 Feb 14;62(3):1677-1683 [PMID: 30562026]
  97. Mol Cell. 2019 Feb 07;73(3):601-610.e5 [PMID: 30595438]
  98. Mol Cell. 2017 Jul 06;67(1):117-127.e5 [PMID: 28602637]
  99. Science. 2013 Feb 15;339(6121):819-23 [PMID: 23287718]
  100. Nat Rev Drug Discov. 2011 Dec 16;11(1):25-36 [PMID: 22173432]
  101. Mol Cell. 2015 Nov 5;60(3):398-407 [PMID: 26545076]
  102. Genome Biol. 2018 Sep 19;19(1):137 [PMID: 30231914]
  103. Aliment Pharmacol Ther. 2011 Aug;34(4):432-42 [PMID: 21679214]

Grants

  1. YG2025QNB55/Research Fund of Medicine and Engineering of Shanghai Jiao Tong University
  2. 32271304/National Natural Science Foundation of China

MeSH Term

Animals
Mice
CRISPR-Cas Systems
Staphylococcus aureus
DNA
Streptococcus pyogenes
Humans
Carbenoxolone
CRISPR-Associated Protein 9
DNA Cleavage
Gene Editing
HEK293 Cells

Chemicals

DNA
Carbenoxolone
CRISPR-Associated Protein 9

Word Cloud

Created with Highcharts 10.0.0Cas9activityDNAinhibitorsinhibitbacteriamechanismsnewcleavagemannerSpyCas9mammaliancellsmiceacidcarbenoxoloneDNA-topologyselectiveBACKGROUND:RegulationtargetCRISPR/CasnaturallyevolvedbacteriophageslackinghigherspeciesThusidentificationbioactiveagentscansuppressurgentlyneededrebalancegeneticpressureRESULTS:identifyfourspecificscreening4607compoundsendonucleaseviathreedistinctmechanisms:substrate-competitiveprotospaceradjacentmotifPAM-bindingsite-occupationsubstrate-targetingsgRNA-targetingdose-dependentStreptococcuspyogenesStaphylococcusaureusSauCas9nickase-basedBE4baseeditorsvitropurifiedenzymeassaysImportantlypamoicshowselectivitypreferentiallylinearcomparedsupercoiledplasmidCONCLUSIONS:pharmacologicallyoffertoolscontrollingPamoicspecificallyCRISPR/Cas9topology-specificAnti-CRISPRtopologyMicemodelhydrodynamicinjectionModeactionSelectivesmall-molecule

Similar Articles

Cited By

No available data.