Estimation and inference for causal spillover effects in egocentric-network randomized trials in the presence of network membership misclassification.

Ariel Chao, Donna Spiegelman, Ashley Buchanan, Laura Forastiere
Author Information
  1. Ariel Chao: Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, United States. ORCID
  2. Donna Spiegelman: Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, United States. ORCID
  3. Ashley Buchanan: Department of Pharmacy Practice and Clinical Research, College of Pharmacy, the University of Rhode Island, 7 Greenhouse Road, Kingston, RI, 02881, United States. ORCID
  4. Laura Forastiere: Department of Biostatistics, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, United States.

Abstract

To leverage peer influence and increase population behavioral changes, behavioral interventions often rely on peer-based strategies. A common study design that assesses such strategies is the egocentric-network randomized trial (ENRT), where index participants receive a behavioral training and are encouraged to disseminate information to their peers. Under this design, a crucial estimand of interest is the Average Spillover Effect (ASpE), which measures the impact of the intervention on participants who do not receive it, but whose outcomes may be affected by others who do. The assessment of the ASpE relies on assumptions about, and correct measurement of, interference sets within which individuals may influence one another's outcomes. It can be challenging to properly specify interference sets, such as networks in ENRTs, and when mismeasured, intervention effects estimated by existing methods will be biased. In studies where social networks play an important role in disease transmission or behavior change, correcting ASpE estimates for bias due to network misclassification is critical for accurately evaluating the full impact of interventions. We combined measurement error and causal inference methods to bias-correct the ASpE estimate for network misclassification in ENRTs, when surrogate networks are recorded in place of true ones, and validation data that relate the misclassified to the true networks are available. We investigated finite sample properties of our methods in an extensive simulation study and illustrated our methods in the HIV Prevention Trials Network (HPTN) 037 study.

Keywords

References

  1. J Acquir Immune Defic Syndr. 2008 Dec 1;49(4):440-6 [PMID: 19186355]
  2. Biometrics. 1977 Jun;33(2):414-8 [PMID: 884199]
  3. Stat Med. 1988 Jul;7(7):745-57 [PMID: 3043623]
  4. J Am Stat Assoc. 2008 Jun;103(482):832-842 [PMID: 19081744]
  5. Uncertain Artif Intell. 2019 Jul;2019: [PMID: 31885520]
  6. Int J STD AIDS. 2008 Dec;19(12):848-50 [PMID: 19050217]
  7. Ann Appl Stat. 2023 Sep;17(3):2165-2191 [PMID: 38250709]
  8. Am J Epidemiol. 2018 Nov 1;187(11):2449-2459 [PMID: 30052722]
  9. Addict Behav. 2017 Nov;74:106-111 [PMID: 28609723]
  10. AIDS Behav. 2023 Feb;27(2):578-590 [PMID: 35932359]
  11. Stat Methods Med Res. 2019 Jun;28(6):1761-1780 [PMID: 29921160]
  12. Curr HIV/AIDS Rep. 2018 Apr;15(2):113-119 [PMID: 29457200]
  13. J Clin Epidemiol. 1990;43(9):941-7 [PMID: 2213082]
  14. Addiction. 2013 May;108(5):934-43 [PMID: 23362861]
  15. Soc Sci Med. 2009 Feb;68(4):740-8 [PMID: 19070413]
  16. Biostatistics. 2020 Jan 1;21(1):102-121 [PMID: 30084949]
  17. Occup Environ Med. 1995 Aug;52(8):557-8 [PMID: 7663646]
  18. AIDS Behav. 2015 Oct;19(10):1818-27 [PMID: 25935214]
  19. AIDS Behav. 2011 Nov;15(8):1654-63 [PMID: 21468659]
  20. Biometrics. 1999 Jun;55(2):338-44 [PMID: 11318185]
  21. Epidemiology. 2024 Jul 1;35(4):481-488 [PMID: 38709023]

Grants

  1. 1R01MH134715-01/NIH HHS

MeSH Term

Humans
Randomized Controlled Trials as Topic
Peer Group
Models, Statistical
Social Networking
HIV Infections
Data Interpretation, Statistical

Word Cloud

Created with Highcharts 10.0.0networksASpEmethodsbehavioralstudymeasurementnetworkmisclassificationcausalinferenceinfluenceinterventionsstrategiesdesignegocentric-networkrandomizedENRTparticipantsreceiveimpactinterventionoutcomesmayinterferencesetsENRTseffectserrortrueHIVspilloverleveragepeerincreasepopulationchangesoftenrelypeer-basedcommonassessestrialindextrainingencourageddisseminateinformationpeerscrucialestimandinterestAverageSpilloverEffectmeasureswhoseaffectedothersassessmentreliesassumptionscorrectwithinindividualsoneanother'scanchallengingproperlyspecifymismeasuredestimatedexistingwillbiasedstudiessocialplayimportantrolediseasetransmissionbehaviorchangecorrectingestimatesbiasduecriticalaccuratelyevaluatingfullcombinedbias-correctestimatesurrogaterecordedplaceonesvalidationdatarelatemisclassifiedavailableinvestigatedfinitesamplepropertiesextensivesimulationillustratedPreventionTrialsNetworkHPTN037Estimationtrialspresencemembership

Similar Articles

Cited By