Molecular docking analysis of breast cancer target RAC1B with ligands.

Kajal Verma, Lakshmi Pillai
Author Information
  1. Kajal Verma: Institute of Sciences, SAGE University, Indore Madhya Pradesh, India 452020.
  2. Lakshmi Pillai: Institute of Sciences, SAGE University, Indore Madhya Pradesh, India 452020.

Abstract

Breast cancer is a malignant neoplasm that arises from the breast tissue, and the best chemotherapy preventive approach is to identify potent inhibitors. In this study, focusing on the Rac1b protein may be an effective approach to developing drug alternatives to treat breast cancer, and we have employed structure-based drug design with the available drugs. Afterwards, molecular docking was used to identify novel inhibitors, and in order to compute the drug likeness and medicinal chemistry, the best-docked complex was put through ADMET studies followed by molecular dynamics simulations to check the stability of the protein-ligand complex using RMSD, RMSF and protein-ligand interactions. Therefore, it is of interest to report the molecular docking analysis of breast cancer target RAC1B with ligands. Here, data shows that the therapeutic compounds that were evaluated showed greater stability in comparison to the reported compounds, EHop-016 and has found promising medication possibilities for breast cancer that target Rac1b.

Keywords

References

  1. Eur J Med Chem. 2014 Mar 3;74:509-23 [PMID: 24508781]
  2. Breast Cancer Res. 2018 Oct 22;20(1):128 [PMID: 30348189]
  3. Curr Opin Struct Biol. 1998 Apr;8(2):195-201 [PMID: 9631293]
  4. Bioinformation. 2015 Dec 31;11(12):543-9 [PMID: 26770028]
  5. Cold Spring Harb Perspect Biol. 2015 Jan 05;7(1):a020412 [PMID: 25561720]
  6. Arch Pharm (Weinheim). 2009 Mar;342(3):133-49 [PMID: 19274700]
  7. Oncotarget. 2015 Sep 29;6(29):26560-74 [PMID: 26387133]
  8. Endocr Relat Cancer. 2011 Feb 23;18(2):207-19 [PMID: 21118977]
  9. Comput Biol Med. 2019 Mar;106:54-64 [PMID: 30682640]
  10. J Biomol Struct Dyn. 2023 Oct-Nov;41(18):9072-9088 [PMID: 36326281]
  11. Curr Drug Metab. 2021;22(7):503-522 [PMID: 34225615]
  12. Br J Cancer. 2002 Sep 9;87(6):635-44 [PMID: 12237774]
  13. Curr Pharm Des. 2019;25(31):3339-3349 [PMID: 31480998]
  14. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [PMID: 8744570]
  15. J Chem Inf Model. 2011 Oct 24;51(10):2515-27 [PMID: 21877713]
  16. Mol Inform. 2022 Sep;41(9):e2100240 [PMID: 35277930]
  17. Breast Cancer Res Treat. 2012 Jun;133(3):1097-104 [PMID: 22350789]
  18. Anticancer Agents Med Chem. 2017;17(2):152-163 [PMID: 27137076]
  19. Oncogene. 2004 Dec 16;23(58):9369-80 [PMID: 15516977]
  20. Oncogene. 2000 Jun 15;19(26):3013-20 [PMID: 10871853]
  21. J Chem Theory Comput. 2017 Jan 10;13(1):9-19 [PMID: 28034310]
  22. Cell Death Dis. 2014 Aug 14;5:e1375 [PMID: 25118935]
  23. Sci Rep. 2024 Oct 23;14(1):25083 [PMID: 39443601]
  24. CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
  25. PLoS One. 2013 Dec 10;8(12):e82849 [PMID: 24340062]
  26. Ann Surg. 1933 Oct;98(4):635-43 [PMID: 17867058]
  27. Oncotarget. 2014 Jan 15;5(1):277-90 [PMID: 24378395]
  28. Clin Cancer Res. 2004 Jul 15;10(14):4799-805 [PMID: 15269155]
  29. Sci Rep. 2018 Sep 18;8(1):14001 [PMID: 30228287]
  30. Crit Rev Oncol Hematol. 2018 Apr;124:29-36 [PMID: 29548483]
  31. Small GTPases. 2017 Jul 3;8(3):139-163 [PMID: 27442895]
  32. Clin Pharmacokinet. 2020 Jun;59(6):699-714 [PMID: 32052379]
  33. Prog Clin Biol Res. 1996;395:159-74 [PMID: 8895988]
  34. J Glob Oncol. 2018 Jul;4:1-16 [PMID: 30085889]
  35. Oncogene. 2023 Feb;42(9):679-692 [PMID: 36599922]
  36. Curr Drug Discov Technol. 2020;17(2):183-190 [PMID: 30848204]
  37. Oncogene. 2016 Dec 8;35(49):6319-6329 [PMID: 27181206]
  38. Biomed Pharmacother. 2022 Sep;153:113305 [PMID: 35717779]
  39. CA Cancer J Clin. 2016 Mar-Apr;66(2):115-32 [PMID: 26808342]
  40. PLoS One. 2022 Dec 29;17(12):e0279689 [PMID: 36580468]
  41. PLoS One. 2015 Jan 30;10(1):e0116747 [PMID: 25635866]
  42. World J Clin Oncol. 2011 Sep 10;2(9):329-38 [PMID: 21909479]
  43. Front Pharmacol. 2020 May 28;11:754 [PMID: 32547389]
  44. Cell Commun Signal. 2017 May 12;15(1):19 [PMID: 28499439]
  45. J Mol Model. 2023 May 8;29(6):171 [PMID: 37155030]
  46. Chem Commun (Camb). 2015 Mar 14;51(21):4402-5 [PMID: 25679020]
  47. Proteins. 2007 Oct 1;69(1):160-76 [PMID: 17557336]
  48. Biol Res. 2017 Oct 2;50(1):33 [PMID: 28969709]
  49. Oncogene. 1999 Nov 18;18(48):6835-9 [PMID: 10597294]
  50. Oncogene. 2013 Feb 14;32(7):903-9 [PMID: 22430205]
  51. Adv Appl Bioinform Chem. 2022 Aug 15;15:59-77 [PMID: 35996620]
  52. Philos Trans R Soc Lond B Biol Sci. 2000 Jul 29;355(1399):965-70 [PMID: 11128990]
  53. Cancer Cell. 2007 Mar;11(3):217-27 [PMID: 17349580]
  54. J Chem Inf Model. 2012 Nov 26;52(11):3099-105 [PMID: 23092397]
  55. Sci Rep. 2017 May 16;7(1):1955 [PMID: 28512306]
  56. Anticancer Agents Med Chem. 2014;14(6):840-51 [PMID: 24066799]
  57. J Chem Inf Model. 2017 Jul 24;57(7):1563-1578 [PMID: 28616990]
  58. J Cheminform. 2019 May 24;11(1):34 [PMID: 31127411]

Word Cloud

Created with Highcharts 10.0.0cancerbreastmoleculardrugdockingtargetRAC1BapproachidentifyinhibitorsRac1bdesigncomplexADMETdynamicsstabilityprotein-ligandanalysisligandscompoundsBreastmalignantneoplasmarisestissuebestchemotherapypreventivepotentstudyfocusingproteinmayeffectivedevelopingalternativestreatemployedstructure-basedavailabledrugsAfterwardsusednovelordercomputelikenessmedicinalchemistrybest-dockedputstudiesfollowedsimulationscheckusingRMSDRMSFinteractionsThereforeinterestreportdatashowstherapeuticevaluatedshowedgreatercomparisonreportedEHop-016foundpromisingmedicationpossibilitiesMolecularStructurebasedsimulation

Similar Articles

Cited By