Application of microbial pigments in the pharmaceutical industry: current status and opportunities.

Jeylin A Escamilla-Medrano, Liliana Londoño-Hernández, Nagamani Balagurusamy, Ayerim Y Hernández-Almanza
Author Information
  1. Jeylin A Escamilla-Medrano: Food Products Research and Development Lab, School of Biological Science, Universidad Autonoma de Coahuila, 27276, Torreón, Coahuila, Mexico.
  2. Liliana Londoño-Hernández: BIOTICS Research Group, School of Basic Sciences, Technology and Engineering, Universidad Nacional Abierta y a Distancia UNAD, Bogotá, Colombia.
  3. Nagamani Balagurusamy: Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, 27275, Torreón, Coahuila, Mexico.
  4. Ayerim Y Hernández-Almanza: Food Products Research and Development Lab, School of Biological Science, Universidad Autonoma de Coahuila, 27276, Torreón, Coahuila, Mexico. ayerim_hernandez@uadec.edu.mx.

Abstract

Microbial pigments are a diverse group of compounds synthesized by microorganisms, which have attracted considerable scientific interest due to their multifaceted biological properties and significant potential in pharmaceutical applications. These pigments demonstrate various activities, including antimicrobial, antioxidant, anti-inflammatory, and anticancer effects, often mediated by intricate interactions with cellular components such as membranes, proteins, and deoxyribonucleic acid (DNA). For example, antimicrobial pigments can compromise membrane integrity or inhibit protein synthesis, while anti-inflammatory pigments modulate key signaling pathways involved in inflammation. This review explores the different microorganisms capable of producing different pigments. Furthermore, it examines the technological applications, including their potential use in pharmaceuticals and their current commercial use. In addition, clinical cases demonstrating the efficacy of microbial pigments in various therapeutic contexts will be presented. Moving forward, microbial pigments are poised to play a pivotal role in drug development and other biomedical applications, offering some sustainable solutions to various challenges in medicine and industry.

Keywords

References

  1. Abd-EL-Aziz AS, Abed NN, Mahfouz AY, Fathy RM (2024) Production and characterization of melanin pigment from black fungus Curvularia soli AS21 ON076460 assisted gamma rays for promising medical uses. Microb Cell Fact 23(1):1–19. https://doi.org/10.1186/s12934-024-02335-y [DOI: 10.1186/s12934-024-02335-y]
  2. Abdelfattah MS, Elmallah MIY, Ebrahim HY, Almeer RS, Eltanany RMA, Abdel Moneim AE (2019) Prodigiosins from a marine sponge-associated actinomycete attenuate HCl/ethanol-induced gastric lesion via antioxidant and anti-inflammatory mechanisms. PLoS ONE 14(6):e0216737. https://doi.org/10.1371/JOURNAL.PONE.0216737 [DOI: 10.1371/JOURNAL.PONE.0216737]
  3. Abdulhafedh HM, Al-Saadoon AH, Abu-Mejdad NM (2023) Efficiency of fungal β-carotene against some causative agents of dermatomycoses. Iran J War Public Health 15(2):167–175. https://doi.org/10.58209/IJWPH.15.2.167 [DOI: 10.58209/IJWPH.15.2.167]
  4. Abu-Ghannam N, Rajauria G (2013) Antimicrobial activity of compounds isolated from algae. In: Functional ingredients from algae for foods and nutraceuticals, pp 287–306. https://doi.org/10.1533/9780857098689.2.287
  5. Acharya K, Shaw S, Bhattacharya SP, Biswas S, Bhandary S, Bhattacharya A (2024) Pigments from pathogenic bacteria: a comprehensive update on recent advances. World J Microbiol Biotechnol 40(9):270. https://doi.org/10.1007/s11274-024-04076-x [DOI: 10.1007/s11274-024-04076-x]
  6. Agarwal H, Bajpai S, Mishra A, Kohli I, Varma A, Fouillaud M, Dufossé L, Joshi NC (2023) Bacterial pigments and their multifaceted roles in contemporary biotechnology and pharmacological applications. Microorganisms 11(3):614. https://doi.org/10.3390/MICROORGANISMS11030614 [DOI: 10.3390/MICROORGANISMS11030614]
  7. Ahgilan A, Sabaratnam V, Periasamy V (2016) Antimicrobial properties of vitamin B2. Int J Food Prop 19(5):1173–1181. https://doi.org/10.1080/10942912.2015.1076459 [DOI: 10.1080/10942912.2015.1076459]
  8. Alaa O, Hassan N (2021) Synthesis and characterization of silver nanoparticles using prodigiosin pigment and evaluation of their antibacterial and anti-inflammatory activities. Iraqi J Sci 62(4):1103–1120. https://doi.org/10.24996/IJS.2021.62.4.7 [DOI: 10.24996/IJS.2021.62.4.7]
  9. Albisoru D, Radu N, Pirvu LC, Stefaniu A, Băbeanu N, Stoica R, Mihai DP (2024) Studies regarding antimicrobial properties of some microbial polyketides derived from Monascus strains. Antibiotics 13(11):1092. https://doi.org/10.3390/ANTIBIOTICS13111092 [DOI: 10.3390/ANTIBIOTICS13111092]
  10. Arif S, Batool A, Khalid N, Ahmed I, Janjua HA (2017) Comparative analysis of stability and biological activities of violacein and starch capped silver nanoparticles. RSC Adv 7(8):4468–4478. https://doi.org/10.1039/C6RA25806A [DOI: 10.1039/C6RA25806A]
  11. Arivizhivendhan KV, Mahesh M, Boopathy R, Swarnalatha S, Regina Mary R, Sekaran G (2018) Antioxidant and antimicrobial activity of bioactive prodigiosin produces from Serratia marcescens using agricultural waste as a substrate. J Food Sci Technol 55(7):2661. https://doi.org/10.1007/S13197-018-3188-9 [DOI: 10.1007/S13197-018-3188-9]
  12. Aruldass CA, Masalamany SRL, Venil CK, Ahmad WA (2018) Antibacterial mode of action of violacein from Chromobacterium violaceum UTM5 against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). Environ Sci Pollut Res Int 25(6):5164–5180. https://doi.org/10.1007/S11356-017-8855-2 [DOI: 10.1007/S11356-017-8855-2]
  13. Averianova LA, Balabanova LA, Son OM, Podvolotskaya AB, Tekutyeva LA (2020) Production of vitamin B2 (Riboflavin) by microorganisms: an overview. Front Bioeng Biotechnol 8:570828. https://doi.org/10.3389/FBIOE.2020.570828 [DOI: 10.3389/FBIOE.2020.570828]
  14. Babitha S (2009) Microbial pigments. Biotechnology for agro-industrial residues utilisation: utilisation of agro-residues. Springer, Berlin, pp 147–162. https://doi.org/10.1007/978-1-4020-9942-7_8 [DOI: 10.1007/978-1-4020-9942-7_8]
  15. Barreto JVDO, Casanova LM, Junior AN, Reis-Mansur MCPP, Vermelho AB (2023) Microbial pigments: major groups and industrial applications. Microorganisms 11(12):2920. https://doi.org/10.3390/MICROORGANISMS11122920 [DOI: 10.3390/MICROORGANISMS11122920]
  16. Barretto DA, Vootla SK (2018) In vitro anticancer activity of staphyloxanthin pigment extracted from Staphylococcus gallinarum KX912244, a gut microbe of Bombyx mori. Indian J Microbiol 58(2):146–158. https://doi.org/10.1007/S12088-018-0718-0/METRICS [DOI: 10.1007/S12088-018-0718-0/METRICS]
  17. Basim I, Jaber Kithar A, Majeed Alaa Gazi ALhashimi R (2021) Antioxidant and antibacterial activity of β-carotene pigment extracted from Parococcus Homiensis strain BKA7 isolated from air of Basra, Iraq. Ann Roman Soc Cell Biol 25:14006–14028
  18. Batista AHM, Moreira ACD, de Carvalho RM, Sales GWP, Nogueira PCN, Grangeiro TB, Medeiros SC, Silveira ER, Nogueira NAP (2017) Antimicrobial effects of violacein against planktonic cells and biofilms of Staphylococcus aureus. Molecules 22(10):1534. https://doi.org/10.3390/MOLECULES22101534 [DOI: 10.3390/MOLECULES22101534]
  19. Becker K, Pfütze S, Kuhnert E, Cox RJ, Stadler M, Surup F (2021) Hybridorubrins A-D: azaphilone heterodimers from stromata of hypoxylon fragiforme and insights into the biosynthetic machinery for azaphilone diversification. Chem A Eur J 27(4):1438–1450. https://doi.org/10.1002/CHEM.202003215 [DOI: 10.1002/CHEM.202003215]
  20. Belozerskaya TA, Gessler NN, Aver‘yanov AA (2017) Melanin pigments of fungi. Fungal metabolites. Springer, Cham, pp 263–291. https://doi.org/10.1007/978-3-319-25001-4_29 [DOI: 10.1007/978-3-319-25001-4_29]
  21. Bermejo R, Acién FG, Ibáñez MJ, Fernández JM, Molina E, Alvarez-Pez JM (2003) Preparative purification of B-phycoerythrin from the microalga Porphyridium cruentum by expanded-bed adsorption chromatography. J Chromatogr B 790(1–2):317–325. https://doi.org/10.1016/S1570-0232(03)00168-5 [DOI: 10.1016/S1570-0232(03)00168-5]
  22. Boontosaeng T, Nimrat S, Vuthiphandchai V (2016) Pigments production of bacteria isolated from dried seafood and capability to inhibit microbial pathogens. IOSR J Environ Sci 10(5):30–34. https://doi.org/10.9790/2402-1005023034 [DOI: 10.9790/2402-1005023034]
  23. Canuto JA, Lima DB, de Menezes RRPPB, Batista AHM, Nogueira PCDN, Silveira ER, Grangeiro TB, Nogueira NAP, Martins AMC (2019) Antichagasic effect of violacein from Chromobacterium violaceum. J Appl Microbiol 127(5):1373–1380. https://doi.org/10.1111/JAM.14391 [DOI: 10.1111/JAM.14391]
  24. Cauz ACG, Carretero GPB, Saraiva GKV, Park P, Mortara L, Cuccovia IM, Brocchi M, Gueiros-Filho FJ (2019) Violacein targets the cytoplasmic membrane of bacteria. ACS Infect Dis 5(4):539–549. https://doi.org/10.1021/ACSINFECDIS.8B00245/SUPPL_FILE/ID8B00245_SI_004.MPG [DOI: 10.1021/ACSINFECDIS.8B00245/SUPPL_FILE/ID8B00245_SI_004.MPG]
  25. Chen M, Shen NX, Chen ZQ, Zhang FM, Chen Y (2017) Penicilones A-D, anti-MRSA azaphilones from the marine-derived fungus Penicillium janthinellum HK1-6. J Nat Prod 80(4):1081–1086. https://doi.org/10.1021/ACS.JNATPROD.6B01179/SUPPL_FILE/NP6B01179_SI_001.PDF [DOI: 10.1021/ACS.JNATPROD.6B01179/SUPPL_FILE/NP6B01179_SI_001.PDF]
  26. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2018) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9(6):7204. https://doi.org/10.18632/ONCOTARGET.23208 [DOI: 10.18632/ONCOTARGET.23208]
  27. Chen P, Wu H, Bian T, Yang L, Jiang H (2023) Prodigiosin improves acute lung injury in a rat model of rheumatoid arthritis via down-regulating the nuclear factor kappaB/nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 signaling pathway. J Physiol Pharmacol 74(1):43–54. https://doi.org/10.26402/JPP.2023.1.05 [DOI: 10.26402/JPP.2023.1.05]
  28. Cheng J, Balbuena E, Miller B, Eroglu A (2021) The role of β-carotene in colonic inflammation and intestinal barrier integrity. Front Nutr 8:723480. https://doi.org/10.3389/FNUT.2021.723480/BIBTEX [DOI: 10.3389/FNUT.2021.723480/BIBTEX]
  29. Cheng KC, Hsiao HC, Hou YC, Hsieh CW, Hsu HY, Chen HY, Lin SP (2022) Improvement in violacein production by utilizing formic acid to induce quorum sensing in Chromobacterium violaceum. Antioxidants 11(5):849. https://doi.org/10.3390/ANTIOX11050849 [DOI: 10.3390/ANTIOX11050849]
  30. Cho SO, Kim M-H, Kim H (2018) β-Carotene inhibits activation of NF-κB, activator protein-1, and STAT3 and regulates abnormal expression of some adipokines in 3T3-L1 adipocytes. J Cancer Prev 23(1):37. https://doi.org/10.15430/JCP.2018.23.1.37 [DOI: 10.15430/JCP.2018.23.1.37]
  31. Choi SY, Kim S, Lyuck S, Kim SB, Mitchell RJ (2015) High-level production of violacein by the newly isolated Duganella violaceinigra str. NI28 and its impact on Staphylococcus aureus. Sci Rep 5(1):1–12. https://doi.org/10.1038/srep15598 [DOI: 10.1038/srep15598]
  32. Choi SY, Lim S, Yoon KH, Lee JI, Mitchell RJ (2021) Biotechnological activities and applications of bacterial pigments violacein and prodigiosin. J Biol Eng 15(1):1–16. https://doi.org/10.1186/S13036-021-00262-9 [DOI: 10.1186/S13036-021-00262-9]
  33. Citi V, Torre S, Flori L, Usai L, Aktay N, Dunford NT, Lutzu GA, Nieri P (2024) Nutraceutical features of the phycobiliprotein C-phycocyanin: evidence from Arthrospira platensis (spirulina). Nutrients 16(11):1752. https://doi.org/10.3390/NU16111752/S1 [DOI: 10.3390/NU16111752/S1]
  34. Danevcic T, Vezjak MB, Tabor M, Zorec M, Stopar D (2016) Prodigiosin induces autolysins in actively grown Bacillus subtilis cells. Front Microbiol. https://doi.org/10.3389/FMICB.2016.00027 [DOI: 10.3389/FMICB.2016.00027]
  35. Danevčič T, Vezjak MB, Zorec M, Stopar D (2016) Prodigiosin—a multifaceted Escherichia coli antimicrobial agent. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0162412 [DOI: 10.1371/JOURNAL.PONE.0162412]
  36. Darshan N, Manonmani HK (2016) Prodigiosin inhibits motility and activates bacterial cell death revealing molecular biomarkers of programmed cell death. AMB Express 6(1):1–12. https://doi.org/10.1186/S13568-016-0222-Z/FIGURES/10 [DOI: 10.1186/S13568-016-0222-Z/FIGURES/10]
  37. De Goncalves RCR, Pombeiro-Sponchiado SR (2005) Antioxidant activity of the melanin pigment extracted from Aspergillus nidulans. Biol Pharm Bull 28(6):1129–1131. https://doi.org/10.1248/BPB.28.1129 [DOI: 10.1248/BPB.28.1129]
  38. de Souza KD, Perez KR, Durán N, Justo GZ, Caseli L (2017) Interaction of violacein in models for cellular membranes: regulation of the interaction by the lipid composition at the air-water interface. Colloids Surf B 160:247–253. https://doi.org/10.1016/J.COLSURFB.2017.09.027 [DOI: 10.1016/J.COLSURFB.2017.09.027]
  39. Deng X, Wang M, Hu S, Feng Y, Shao Y, Xie Y, Wu M, Chen Y, Shi X (2019) The neuroprotective effect of astaxanthin on pilocarpine-induced status epilepticus in rats. Front Cell Neurosci 13:444469. https://doi.org/10.3389/FNCEL.2019.00123/BIBTEX [DOI: 10.3389/FNCEL.2019.00123/BIBTEX]
  40. Devine D, Hancock R (2002) Cationic peptides: distribution and mechanisms of resistance. Curr Pharm des 8(9):703–714. https://doi.org/10.2174/1381612023395501 [DOI: 10.2174/1381612023395501]
  41. Dmytruk KV, Ruchala J, Fayura LR, Chrzanowski G, Dmytruk OV, Tsyrulnyk AO, Andreieva YA, Fedorovych DV, Motyka OI, Mattanovich D, Marx H, Sibirny AA (2023) Efficient production of bacterial antibiotics aminoriboflavin and roseoflavin in eukaryotic microorganisms, yeasts. Microb Cell Fact 22(1):1–13. https://doi.org/10.1186/S12934-023-02129-8/FIGURES/4 [DOI: 10.1186/S12934-023-02129-8/FIGURES/4]
  42. Dodou HV, de Morais Batista AH, Sales GWP, de Medeiros SC, Rodrigues ML, Nogueira PCN, Silveira ER, Nogueira NAP (2017) Violacein antimicrobial activity on Staphylococcus epidermidis and synergistic effect on commercially available antibiotics. J Appl Microbiol 123(4):853–860. https://doi.org/10.1111/JAM.13547 [DOI: 10.1111/JAM.13547]
  43. Dodou HV, Batista AHM, Medeiros SC, Sales GWP, Rodrigues ML, Pereira PIO, Nogueira PCN, Silveira ER, Grangeiro TB, Nogueira NAP (2020) Violacein antimicrobial activity on Staphylococcus epidermidis biofilm. Nat Prod Res 34(23):3414–3417. https://doi.org/10.1080/14786419.2019.1569654 [DOI: 10.1080/14786419.2019.1569654]
  44. Duppeti H, Chakraborty S, Das BS, Mallick N, Kotamreddy JNR (2017) Rapid assessment of algal biomass and pigment contents using diffuse reflectance spectroscopy and chemometrics. Algal Res 27:274–285. https://doi.org/10.1016/J.ALGAL.2017.09.016 [DOI: 10.1016/J.ALGAL.2017.09.016]
  45. El Shafay SM, Ali SS, El-Sheekh MM (2016) Antimicrobial activity of some seaweeds species from Red sea, against multidrug resistant bacteria. Egypt J Aquat Res 42(1):65–74. https://doi.org/10.1016/J.EJAR.2015.11.006 [DOI: 10.1016/J.EJAR.2015.11.006]
  46. El-Baz FK, Ali SI, Elgohary R, Salama A (2023) Natural β-carotene prevents acute lung injury induced by cyclophosphamide in mice. PLoS ONE 18(4):e0283779. https://doi.org/10.1371/JOURNAL.PONE.0283779 [DOI: 10.1371/JOURNAL.PONE.0283779]
  47. El-Kashef DH, Youssef FS, Hartmann R, Knedel TO, Janiak C, Lin W, Reimche I, Teusch N, Liu Z, Proksch P (2020) Azaphilones from the red sea fungus Aspergillus falconensis. Mar Drugs 18(4):204. https://doi.org/10.3390/MD18040204 [DOI: 10.3390/MD18040204]
  48. El-Naggar NEA, El-Ewasy SM (2017) Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories Streptomyces glaucescens NEAE-H. Sci Rep. https://doi.org/10.1038/srep42129 [DOI: 10.1038/srep42129]
  49. El-Zayat SR, Sibaii H, Mannaa FA (2019) Toll-like receptors activation, signaling, and targeting: an overview. Bull Natl Res Centre 43(1):1–12. https://doi.org/10.1186/S42269-019-0227-2 [DOI: 10.1186/S42269-019-0227-2]
  50. Fakhri S, Dargahi L, Abbaszadeh F, Jorjani M (2018) Astaxanthin attenuates neuroinflammation contributed to the neuropathic pain and motor dysfunction following compression spinal cord injury. Brain Res Bull 143:217–224. https://doi.org/10.1016/J.BRAINRESBULL.2018.09.011 [DOI: 10.1016/J.BRAINRESBULL.2018.09.011]
  51. Ferreira VS, Pinto RF, Sant’Anna C (2016) Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus. J Appl Microbiol 120(3):661–670. https://doi.org/10.1111/JAM.13007 [DOI: 10.1111/JAM.13007]
  52. Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE (2007) Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin Exp Immunol 147(2):227–235. https://doi.org/10.1111/J.1365-2249.2006.03261.X [DOI: 10.1111/J.1365-2249.2006.03261.X]
  53. Fredimoses M, Zhou X, Lin X, Tian X, Ai W, Wang J, Liao S, Liu J, Yang B, Yang X, Liu Y (2014) New prenylxanthones from the deep-sea derived fungus Emericella sp. SCSIO 05240. Mar Drugs 12(6):3190–3202. https://doi.org/10.3390/MD12063190 [DOI: 10.3390/MD12063190]
  54. Fujioka S, Niu J, Schmidt C, Sclabas GM, Peng B, Uwagawa T, Li Z, Evans DB, Abbruzzese JL, Chiao PJ (2004) NF-κB and AP-1 connection: mechanism of NF-κB-dependent regulation of AP-1 activity. Mol Cell Biol 24(17):7806–7819. https://doi.org/10.1128/MCB.24.17.7806-7819.2004 [DOI: 10.1128/MCB.24.17.7806-7819.2004]
  55. Gao W, Chai C, Li XN, Sun W, Li F, Chen C, Wang J, Zhu H, Wang Y, Hu Z, Zhang Y (2020) Two anti-inflammatory chlorinated azaphilones from Chaetomium globosum TW1-1 cultured with 1-methyl-l-tryptophan and structure revision of chaephilone C. Tetrahedron Lett 61(8):151516. https://doi.org/10.1016/J.TETLET.2019.151516 [DOI: 10.1016/J.TETLET.2019.151516]
  56. Gong M, Bassi A (2016) Carotenoids from microalgae: A review of recent developments. Biotechnol Adv. 34(8):1396–1412. https://doi.org/10.1016/J.BIOTECHADV.2016.10.005 [DOI: 10.1016/J.BIOTECHADV.2016.10.005]
  57. Grover P, Bhatnagar A, Kumari N, Narayan Bhatt A, Kumar Nishad D, Purkayastha J (2021) C-Phycocyanin-a novel protein from Spirulina platensis—In vivo toxicity, antioxidant and immunomodulatory studies. Saudi J Biol Sci 28(3):1853. https://doi.org/10.1016/J.SJBS.2020.12.037 [DOI: 10.1016/J.SJBS.2020.12.037]
  58. Gu L, Sun FJ, Li CP, Cui LT, Yang MH, Kong LY (2021) Ardeemins and citrinin dimer derivatives from Aspergillus terreus harbored in Pinellia ternate. Phytochem Lett 42:77–81. https://doi.org/10.1016/J.PHYTOL.2021.02.007 [DOI: 10.1016/J.PHYTOL.2021.02.007]
  59. Gupta R, Ghosh SK (2023) Discerning perturbed assembly of lipids in a model membrane in presence of violacein: Effects of membrane hydrophobicity. Biochim Biophys Acta (BBA) Biomembr 1865(4):184130. https://doi.org/10.1016/J.BBAMEM.2023.184130 [DOI: 10.1016/J.BBAMEM.2023.184130]
  60. Gupta R, Mitra S, Chowdhury S, Das G, Priyadarshini R, Mukhopadhyay MK, Ghosh SK (2021) Discerning perturbed assembly of lipids in a model membrane in presence of violacein. Biochim Biophys Acta (BBA) Biomembr 1863(9):183647. https://doi.org/10.1016/J.BBAMEM.2021.183647 [DOI: 10.1016/J.BBAMEM.2021.183647]
  61. Guryanov I, Naumenko E (2024) Bacterial pigment prodigiosin as multifaceted compound for medical and industrial application. Appl Microbiol 4(4):1702–1728. https://doi.org/10.3390/APPLMICROBIOL4040115 [DOI: 10.3390/APPLMICROBIOL4040115]
  62. Haddad MS, Aghaei S, Zargar M (2017) Antimicrobial and antioxidant activity of carotenoid pigment produced by native Rhodococcus spp. isolated from soil. Int J Mol Clin Microbiol 7(1):809–815
  63. Hage-Hülsmann J, Grünberger A, Thies S, Santiago-Schübel B, Klein AS, Pietruszka J, Binder D, Hilgers F, Domröse A, Drepper T, Kohlheyer D, Jaeger KE, Loeschcke A (2018) Natural biocide cocktails: combinatorial antibiotic effects of prodigiosin and biosurfactants. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0200940 [DOI: 10.1371/JOURNAL.PONE.0200940]
  64. Hamad MNF, Marrez DA, El-Sherbieny SMR (2020) Toxicity evaluation and antimicrobial activity of purified pyocyanin from Pseudomonas aeruginosa. Biointerface Res Appl Chem 10(6):6974–6990. https://doi.org/10.33263/BRIAC106.69746990 [DOI: 10.33263/BRIAC106.69746990]
  65. Hassouni EM (2014) Antioxidant and antimicrobial activities of melanin produced by a Pseudomonas balearica strain. J Biotechnol Lett 7053(1):87–94
  66. Hazarika DJ, Gautom T, Parveen A, Goswami G, Barooah M, Modi MK, Boro RC (2020) Mechanism of interaction of an endofungal bacterium Serratia marcescens D1 with its host and non-host fungi. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0224051 [DOI: 10.1371/JOURNAL.PONE.0224051]
  67. He Q, Yang H, Wu L, Hu C (2015) Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresour Technol 191:219–228. https://doi.org/10.1016/J.BIORTECH.2015.05.021 [DOI: 10.1016/J.BIORTECH.2015.05.021]
  68. Herráez R, Mur A, Merlos A, Viñas M, Vinuesa T (2019) Using prodigiosin against some gram-positive and gram-negative bacteria and Trypanosoma cruzi. J Venom Anim Toxins Includ Trop Dis 25:20190001. https://doi.org/10.1590/1678-9199-JVATITD-2019-0001 [DOI: 10.1590/1678-9199-JVATITD-2019-0001]
  69. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444(7121):860–867. https://doi.org/10.1038/nature05485 [DOI: 10.1038/nature05485]
  70. Hu Z, Gogol EP, Lutkenhaus J (2002) Dynamic assembly of MinD on phospholipid vesicles regulated by ATP and MinE. Proc Natl Acad Sci USA 99(10):6761–6766. https://doi.org/10.1073/PNAS.102059099/ASSET/97D17A25-D84C-4C81-8EE3-CD8747A4EF28/ASSETS/GRAPHIC/PQ1020590007.JPEG [DOI: 10.1073/PNAS.102059099/ASSET/97D17A25-D84C-4C81-8EE3-CD8747A4EF28/ASSETS/GRAPHIC/PQ1020590007.JPEG]
  71. Im H, Choi SY, Son S, Mitchell RJ (2017) Combined application of bacterial predation and violacein to kill polymicrobial pathogenic communities. Sci Rep. https://doi.org/10.1038/s41598-017-14567-7 [DOI: 10.1038/s41598-017-14567-7]
  72. Isbrandt T, Frisvad JC, Madsen A, Larsen TO (2020) New azaphilones from Aspergillus neoglaber. AMB Express 10(1):1–6. https://doi.org/10.1186/S13568-020-01078-4/FIGURES/4 [DOI: 10.1186/S13568-020-01078-4/FIGURES/4]
  73. Jadaun P, Seniya C, Pal SK, Kumar S, Kumar P, Nema V, Kulkarni SS, Mukherjee A (2022) Elucidation of antiviral and antioxidant potential of C-phycocyanin against HIV-1 infection through in silico and in vitro approaches. Antioxidants 11(10):1942. https://doi.org/10.3390/ANTIOX11101942/S1 [DOI: 10.3390/ANTIOX11101942/S1]
  74. Jena J, Pradhan N, Dash BP, Panda PK, Mishra BK (2015) Pigment mediated biogenic synthesis of silver nanoparticles using diatom Amphora sp. and its antimicrobial activity. J Saudi Chem Soc 19(6):661–666. https://doi.org/10.1016/J.JSCS.2014.06.005 [DOI: 10.1016/J.JSCS.2014.06.005]
  75. Jeong BY, Wittmann C, Kato T, Park EY (2015) Comparative metabolic flux analysis of an Ashbya gossypii wild type strain and a high riboflavin-producing mutant strain. J Biosci Bioeng 119(1):101–106. https://doi.org/10.1016/J.JBIOSC.2014.06.014 [DOI: 10.1016/J.JBIOSC.2014.06.014]
  76. John Jimtha C, Jishma P, Sreelekha S, Chithra S, Radhakrishnan E (2017) Antifungal properties of prodigiosin producing rhizospheric Serratia sp. Rhizosphere 3:105–108. https://doi.org/10.1016/J.RHISPH.2017.02.003 [DOI: 10.1016/J.RHISPH.2017.02.003]
  77. Joshi K, Kumar P, Kataria R (2023) Microbial carotenoid production and their potential applications as antioxidants: a current update. Process Biochem 128:190–205. https://doi.org/10.1016/J.PROCBIO.2023.02.020 [DOI: 10.1016/J.PROCBIO.2023.02.020]
  78. Kalra R, Conlan XA, Goel M (2020) Fungi as a potential source of pigments: harnessing filamentous fungi. Front Chem 8:526952. https://doi.org/10.3389/FCHEM.2020.00369/BIBTEX [DOI: 10.3389/FCHEM.2020.00369/BIBTEX]
  79. Kancharla P, Li Y, Yeluguri M, Dodean RA, Reynolds KA, Kelly JX (2021) Total synthesis and antimalarial activity of 2-(p-hydroxybenzyl)-prodigiosins, isoheptylprodigiosin, and geometric isomers of tambjamine MYP1 isolated from marine bacteria. J Med Chem 64(12):8739. https://doi.org/10.1021/ACS.JMEDCHEM.1C00748 [DOI: 10.1021/ACS.JMEDCHEM.1C00748]
  80. Kanelli M, Mandic M, Kalakona M, Vasilakos S, Kekos D, Nikodinovic-Runic J, Topakas E (2018) Microbial production of violacein and process optimization for dyeing polyamide fabrics with acquired antimicrobial properties. Front Microbiol 9(JUL):372195. https://doi.org/10.3389/FMICB.2018.01495/BIBTEX [DOI: 10.3389/FMICB.2018.01495/BIBTEX]
  81. Karpiński TM, Adamczak A (2019) Fucoxanthin—an antibacterial carotenoid. Antioxidants 8(8):239. https://doi.org/10.3390/ANTIOX8080239 [DOI: 10.3390/ANTIOX8080239]
  82. Kawee-ai A, Kuntiya A, Kim SM (2013) Anticholinesterase and antioxidant activities of fucoxanthin purified from the microalga Phaeodactylum Tricornutum. Nat Prod Commun 8(10):1934578X1300801. https://doi.org/10.1177/1934578X1300801010 [DOI: 10.1177/1934578X1300801010]
  83. Khan F, Pham DTN, Oloketuyi SF, Kim Y-M (2019) Antibiotics application strategies to control biofilm formation in pathogenic bacteria. Curr Pharm Biotechnol 21(4):270–286. https://doi.org/10.2174/1389201020666191112155905 [DOI: 10.2174/1389201020666191112155905]
  84. Khan F, Pham DTN, Kim YM (2020) Alternative strategies for the application of aminoglycoside antibiotics against the biofilm-forming human pathogenic bacteria. Appl Microbiol Biotechnol 104(5):1955–1976. https://doi.org/10.1007/S00253-020-10360-1 [DOI: 10.1007/S00253-020-10360-1]
  85. Kiki MJ (2023) Biopigments of microbial origin and their application in the cosmetic industry. Cosmetics 10(2):47. https://doi.org/10.3390/COSMETICS10020047 [DOI: 10.3390/COSMETICS10020047]
  86. Kim HS, Hayashi M, Shibata Y, Wataya Y, Mitamura T, Horii T, Kawauchi K, Hirata H, Tsuboi S, Moriyama Y (1999) Cycloprodigiosin hydrochloride obtained from Pseudoalteromonas denitrificans is a potent antimalarial agent. Biol Pharm Bull 22(5):532–534. https://doi.org/10.1248/BPB.22.532 [DOI: 10.1248/BPB.22.532]
  87. Kim KN, Heo SJ, Yoon WJ, Kang SM, Ahn G, Yi TH, Jeon YJ (2010) Fucoxanthin inhibits the inflammatory response by suppressing the activation of NF-κB and MAPKs in lipopolysaccharide-induced RAW 264.7 macrophages. Eur J Pharmacol 649(1–3):369–375. https://doi.org/10.1016/J.EJPHAR.2010.09.032 [DOI: 10.1016/J.EJPHAR.2010.09.032]
  88. Kim U, Cho DH, Heo J, Yun JH, Choi DY, Cho K, Kim HS (2020) Two-stage cultivation strategy for the improvement of pigment productivity from high-density heterotrophic algal cultures. Bioresour Technol 302:122840. https://doi.org/10.1016/J.BIORTECH.2020.122840 [DOI: 10.1016/J.BIORTECH.2020.122840]
  89. Kim HJ, Lee MS, Jeong SK, Lee SJ (2023) Transcriptomic analysis of the antimicrobial activity of prodigiosin against Cutibacterium acnes. Sci Rep 213(1):1–9. https://doi.org/10.1038/s41598-023-44612-7 [DOI: 10.1038/s41598-023-44612-7]
  90. Kimyon Ö, Das T, Ibugo AI, Kutty SK, Ho KK, Tebben J, Kumar N, Manefield M (2016) Serratia secondary metabolite prodigiosin inhibits Pseudomonas aeruginosa biofilm development by producing reactive oxygen species that damage biological molecules. Front Microbiol 7(JUN):205445. https://doi.org/10.3389/FMICB.2016.00972/BIBTEX [DOI: 10.3389/FMICB.2016.00972/BIBTEX]
  91. King TC (2007) Cell injury, cellular responses to injury, and cell death. In: Elsevier’s integrated pathology, pp 1–20. https://doi.org/10.1016/B978-0-323-04328-1.50007-3
  92. Kiran GS, Dhasayan A, Lipton AN, Selvin J, Arasu MV, Al-Dhabi NA (2014) Melanin-templated rapid synthesis of silver nanostructures. J Nanobiotechnol 12(1):1–13. https://doi.org/10.1186/1477-3155-12-18/TABLES/2 [DOI: 10.1186/1477-3155-12-18/TABLES/2]
  93. Kiran GS, Jackson SA, Priyadharsini S, Dobson ADW, Selvin J (2017) Synthesis of Nm-PHB (nanomelanin-polyhydroxy butyrate) nanocomposite film and its protective effect against biofilm-forming multi drug resistant Staphylococcus aureus. Sci Rep 7(1):1–13. https://doi.org/10.1038/s41598-017-08816-y [DOI: 10.1038/s41598-017-08816-y]
  94. Konno H, Matsuya H, Okamoto M, Sato T, Tanaka Y, Yokoyama K, Kataoka T, Nagai K, Wasserman HH, Ohkuma S (1998) Prodigiosins uncouple mitochondrial and bacterial F-ATPases: evidence for their H+/Cl- symport activity. J Biochem 124(3):547–556. https://doi.org/10.1093/OXFORDJOURNALS.JBCHEM.A022147 [DOI: 10.1093/OXFORDJOURNALS.JBCHEM.A022147]
  95. Krajewski SS, Ignatov D, Johansson J (2017) Two are better than one: dual targeting of riboswitches by metabolite analogs. Cell Chem Biol 24(5):535–537. https://doi.org/10.1016/j.chembiol.2017.05.004 [DOI: 10.1016/j.chembiol.2017.05.004]
  96. Krespach MKC, Stroe MC, Netzker T, Rosin M, Zehner LM, Komor AJ, Beilmann JM, Krüger T, Scherlach K, Kniemeyer O, Schroeckh V, Hertweck C, Brakhage AA (2023) Streptomyces polyketides mediate bacteria–fungi interactions across soil environments. Nat Microbiol 8(7):1348–1361. https://doi.org/10.1038/s41564-023-01382-2 [DOI: 10.1038/s41564-023-01382-2]
  97. Krishna PS, Vani K, Prasad MR, Samatha B, Hima Bindu NSVSL, Singara Charya MA, Shetty PR (2013) In -silico molecular docking analysis of prodigiosin and cycloprodigiosin as COX-2 inhibitors. Springerplus 2(1):1–6. https://doi.org/10.1186/2193-1801-2-172/TABLES/3 [DOI: 10.1186/2193-1801-2-172/TABLES/3]
  98. Kumar A, Shankar Vishwakarma H, Singh J, Dwivedi S, Kumar M (2015) Microbial pigments: production and their applications in various industries. IJPCBS 2015(1):203–212
  99. Lapenda JC, Silva PA, Vicalvi MC, Sena KXFR, Nascimento SC (2015) Antimicrobial activity of prodigiosin isolated from Serratia marcescens UFPEDA 398. World J Microbiol Biotechnol 31(2):399–406. https://doi.org/10.1007/S11274-014-1793-Y [DOI: 10.1007/S11274-014-1793-Y]
  100. Leblanc JG, Laiño JE, del Valle MJ, Vannini V, van Sinderen D, Taranto MP, de Valdez GF, de Giori GS, Sesma F (2011) B-group vitamin production by lactic acid bacteria–current knowledge and potential applications. J Appl Microbiol 111(6):1297–1309. https://doi.org/10.1111/J.1365-2672.2011.05157.X [DOI: 10.1111/J.1365-2672.2011.05157.X]
  101. Lee AH, Shin HY, Park JH, Koo SY, Kim SM, Yang SH (2021) Fucoxanthin from microalgae Phaeodactylum tricornutum inhibits pro-inflammatory cytokines by regulating both NF-κB and NLRP3 inflammasome activation. Sci Rep 11(1):1–12. https://doi.org/10.1038/s41598-020-80748-6 [DOI: 10.1038/s41598-020-80748-6]
  102. Lee J, Bae J, Youn DY, Ahn J, Hwang WT, Bae H, Bae PK, Kim ID (2022) Violacein-embedded nanofiber filters with antiviral and antibacterial activities. Chem Eng J 444:136460. https://doi.org/10.1016/J.CEJ.2022.136460 [DOI: 10.1016/J.CEJ.2022.136460]
  103. Leon LL, Miranda CC, De Souza AO, Durán N (2001) Antileishmanial activity of the violacein extracted from Chromobacterium violaceum. J Antimicrob Chemother 48(3):449–450. https://doi.org/10.1093/JAC/48.3.449 [DOI: 10.1093/JAC/48.3.449]
  104. Li C, Yu Y, Li W, Liu B, Jiao X, Song X, Lv C, Qin S (2017) Phycocyanin attenuates pulmonary fibrosis via the TLR2-MyD88-NF-κB signaling pathway. Sci Rep 7(1):1–12. https://doi.org/10.1038/s41598-017-06021-5 [DOI: 10.1038/s41598-017-06021-5]
  105. Li HT, Duan RT, Liu T, Yang RN, Wang JP, Liu SX, Yang YB, Zhou H, Ding ZT (2020a) Penctrimertone, a bioactive citrinin dimer from the endophytic fungus Penicillium sp. T2–11. Fitoterapia 146:104711. https://doi.org/10.1016/J.FITOTE.2020.104711 [DOI: 10.1016/J.FITOTE.2020.104711]
  106. Li S, Ren X, Wang Y, Hu J, Wu H, Song S, Yan C (2020b) Fucoxanthin alleviates palmitate-induced inflammation in RAW 264.7 cells through improving lipid metabolism and attenuating mitochondrial dysfunction. Food Funct 11(4):3361–3370. https://doi.org/10.1039/D0FO00442A [DOI: 10.1039/D0FO00442A]
  107. Li Z, Dai Z, Shi E, Wan P, Chen G, Zhang Z, Xu Y, Gao R, Zeng X, Li D (2023) Study on the interaction between β-carotene and gut microflora using an in vitro fermentation model. Food Sci Hum Wellness 12(4):1369–1378. https://doi.org/10.1016/J.FSHW.2022.10.030 [DOI: 10.1016/J.FSHW.2022.10.030]
  108. Libby P (2007) Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr Rev 65(suppl_3):S140–S146. https://doi.org/10.1111/J.1753-4887.2007.TB00352.X [DOI: 10.1111/J.1753-4887.2007.TB00352.X]
  109. Lin L, Xu J (2020) Fungal pigments and their roles associated with human health. J Fungi 6(4):280. https://doi.org/10.3390/JOF6040280 [DOI: 10.3390/JOF6040280]
  110. Linnewiel K, Ernst H, Caris-Veyrat C, Ben-Dor A, Kampf A, Salman H, Danilenko M, Levy J, Sharoni Y (2009) Structure activity relationship of carotenoid derivatives in activation of the electrophile/antioxidant response element transcription system. Free Radic Biol Med 47(5):659–667. https://doi.org/10.1016/J.FREERADBIOMED.2009.06.008 [DOI: 10.1016/J.FREERADBIOMED.2009.06.008]
  111. Liu Y, Zheng J, Zhang Y, Wang Z, Yang Y, Bai M, Dai Y (2016) Fucoxanthin activates apoptosis via inhibition of PI3K/Akt/mTOR pathway and suppresses invasion and migration by restriction of p38-MMP-2/9 pathway in human glioblastoma cells. Neurochem Res 41(10):2728–2751. https://doi.org/10.1007/S11064-016-1989-7 [DOI: 10.1007/S11064-016-1989-7]
  112. Liu YZ, Wang YX, Jiang CL (2017) Inflammation: The common pathway of stress-related diseases. Front Hum Neurosci 11:273283. https://doi.org/10.3389/FNHUM.2017.00316/BIBTEX [DOI: 10.3389/FNHUM.2017.00316/BIBTEX]
  113. Liu H, Zhang C, Zhang X, Tan K, Zhang H, Cheng D, Ye T, Li S, Ma H, Zheng H (2020) A novel carotenoids-producing marine bacterium from noble scallop Chlamys nobilis and antioxidant activities of its carotenoid compositions. Food Chem 320:126629. https://doi.org/10.1016/J.FOODCHEM.2020.126629 [DOI: 10.1016/J.FOODCHEM.2020.126629]
  114. Lopes SCP, Blanco YC, Justo GZ, Nogueira PA, Rodrigues FLS, Goelnitz U, Wunderlich G, Facchini G, Brocchi M, Duran N, Costa FTM (2009) Violacein extracted from Chromobacterium violaceum inhibits plasmodium growth in vitro and in vivo. Antimicrob Agents Chemother 53(5):2149. https://doi.org/10.1128/AAC.00693-08 [DOI: 10.1128/AAC.00693-08]
  115. Lu L, Li W, Sun C, Kang S, Li J, Luo X, Su Q, Liu B, Qin S (2020) Phycocyanin ameliorates radiation-induced acute intestinal toxicity by regulating the effect of the gut microbiota on the TLR4/Myd88/NF-κB pathway. J Parenter Enter Nutr 44(7):1308–1317. https://doi.org/10.1002/JPEN.1744 [DOI: 10.1002/JPEN.1744]
  116. Lykov A, Salmin A, Gevorgiz R, Zheleznova S, Rachkovskaya L, Surovtseva M, Poveshchenko O (2023) Study of the antimicrobial potential of the arthrospira platensis, Planktothrix agardhii, Leptolyngbya cf. ectocarpi, Roholtiella mixta nov., Tetraselmis viridis, and Nanofrustulum shiloi against gram-positive, gram-negative bacteria, and mycobacteria. Mar Drugs 21(9):492. https://doi.org/10.3390/MD21090492 [DOI: 10.3390/MD21090492]
  117. Ma P, Huang R, Jiang J, Ding Y, Li T, Ou Y (2020) Potential use of C-phycocyanin in non-alcoholic fatty liver disease. Biochem Biophys Res Commun 526(4):906–912. https://doi.org/10.1016/J.BBRC.2020.04.001 [DOI: 10.1016/J.BBRC.2020.04.001]
  118. Ma Z, Xiao H, Li H, Lu X, Yan J, Nie H, Yin Q (2024) Prodigiosin as an antibiofilm agent against the bacterial biofilm-associated infection of Pseudomonas aeruginosa. Pathogens 13(2):145. https://doi.org/10.3390/PATHOGENS13020145/S1 [DOI: 10.3390/PATHOGENS13020145/S1]
  119. Mageswari A, Subramanian P, Srinivasan R, Karthikeyan S, Gothandam KM (2015) Astaxanthin from psychrotrophic Sphingomonas faeni exhibits antagonism against food-spoilage bacteria at low temperatures. Microbiol Res 179:38–44. https://doi.org/10.1016/J.MICRES.2015.06.010 [DOI: 10.1016/J.MICRES.2015.06.010]
  120. Manimala MRA, Murugesan R (2014) In vitro antioxidant and antimicrobial activity of carotenoid pigment extracted from Sporobolomyces sp. isolated from natural source. J Appl Nat Sci 6(2):649–653. https://doi.org/10.31018/JANS.V6I2.511 [DOI: 10.31018/JANS.V6I2.511]
  121. Marey MA, Abozahra R, El-Nikhely NA, Kamal MF, Abdelhamid SM, El-Kholy MA (2024) Transforming microbial pigment into therapeutic revelation: extraction and characterization of pyocyanin from Pseudomonas aeruginosa and its therapeutic potential as an antibacterial and anticancer agent. Microb Cell Fact 23(1):1–21. https://doi.org/10.1186/S12934-024-02438-6/FIGURES/10 [DOI: 10.1186/S12934-024-02438-6/FIGURES/10]
  122. Marín-Prida J, Pavón-Fuentes N, Lagumersindez-Denis N, Camacho-Rodríguez H, García-Soca AM, Sarduy-Chávez RDLC, Vieira ÉLM, Carvalho-Tavares J, Falcón-Cama V, Fernández-Massó JR, Hernández-González I, Martínez-Donato G, Guillén-Nieto G, Pentón-Arias E, Teixeira MM, Pentón-Rol G (2022) Anti-inflammatory mechanisms and pharmacological actions of phycocyanobilin in a mouse model of experimental autoimmune encephalomyelitis: a therapeutic promise for multiple sclerosis. Front Immunol 13:1036200. https://doi.org/10.3389/FIMMU.2022.1036200/BIBTEX [DOI: 10.3389/FIMMU.2022.1036200/BIBTEX]
  123. Matern A, Pedrolli D, Großhennig S, Johansson J, Mack M (2016) Uptake and metabolism of antibiotics roseoflavin and 8-demethyl-8-aminoriboflavin in riboflavin-auxotrophic Listeria monocytogenes. J Bacteriol 198(23):3233–3243. https://doi.org/10.1128/JB.00388-16/SUPPL_FILE/ZJB999094251SO1.PDF [DOI: 10.1128/JB.00388-16/SUPPL_FILE/ZJB999094251SO1.PDF]
  124. Matsuya H, Okamoto M, Ochi T, Nishikawa A, Shimizu S, Kataoka T, Nagai K, Wasserman HH, Ohkuma S (2000) Reversible and potent uncoupling of hog gastric (H++K+)-ATPase by prodigiosins. Biochem Pharmacol 60(12):1855–1863. https://doi.org/10.1016/S0006-2952(00)00509-8 [DOI: 10.1016/S0006-2952(00)00509-8]
  125. Meijer K, de Vries M, Al-Lahham S, Bruinenberg M, Weening D, Dijkstra M, Kloosterhuis N, van der Leij RJ, van der Want H, Kroesen BJ, Vonk R, Rezaee F (2011) Human primary adipocytes exhibit immune cell function: adipocytes prime inflammation independent of macrophages. PLoS ONE 6(3):e17154. https://doi.org/10.1371/JOURNAL.PONE.0017154 [DOI: 10.1371/JOURNAL.PONE.0017154]
  126. Metwally RA, El Sikaily A, El-Sersy NA, Ghozlan HA, Sabry SA (2021) Antimicrobial activity of textile fabrics dyed with prodigiosin pigment extracted from marine Serratia rubidaea RAM_Alex bacteria. Egypt J Aquat Res 47(3):301–305. https://doi.org/10.1016/J.EJAR.2021.05.004 [DOI: 10.1016/J.EJAR.2021.05.004]
  127. Mogadem A, Almamary MA, Mahat NA, Jemon K, Ahmad WA, Ali I (2021) Antioxidant activity evaluation of flexirubin type pigment from Chryseobacterium artocarpi CECT 8497 and related docking study. Molecules. https://doi.org/10.3390/MOLECULES26040979 [DOI: 10.3390/MOLECULES26040979]
  128. Mohana D, Thippeswamy S, Abhishek R (2013) Antioxidant, antibacterial, and ultraviolet-protective properties of carotenoids isolated from Micrococcus spp. Radiat Prot Environ 36(4):168. https://doi.org/10.4103/0972-0464.142394 [DOI: 10.4103/0972-0464.142394]
  129. Mojib N, Philpott R, Huang JP, Niederweis M, Bej AK (2010) Antimycobacterial activity in vitro of pigments isolated from Antarctic bacteria. Antonie Van Leeuwenhoek 98(4):531–540. https://doi.org/10.1007/S10482-010-9470-0 [DOI: 10.1007/S10482-010-9470-0]
  130. Mousavi Nadushan R, Hosseinzade I (2020) Optimization of production and antioxidant activity of fucoxanthin from marine haptophyte algae, Isochrysis galbana. Iran J Fisher Sci 19(6):2901–2908. https://doi.org/10.22092/IJFS.2020.122837 [DOI: 10.22092/IJFS.2020.122837]
  131. Mudenur C, Boruah P, Kumar A, Katiyar V (2022) Prodigiosin-loaded poly(lactic acid) to combat the biofilm-associated infections. ACS Appl Bio Mater 5(5):2143–2151. https://doi.org/10.1021/ACSABM.1C01187/SUPPL_FILE/MT1C01187_SI_001.PDF [DOI: 10.1021/ACSABM.1C01187/SUPPL_FILE/MT1C01187_SI_001.PDF]
  132. Mundo-Franco Z, Luna-Herrera J, Castañeda-Sánchez JI, Serrano-Contreras JI, Rojas-Franco P, Blas-Valdivia V, Franco-Colín M, Cano-Europa E (2024) C-phycocyanin prevents oxidative stress, inflammation, and lung remodeling in an ovalbumin-induced rat asthma model. Int J Mol Sci 25(13):7031. https://doi.org/10.3390/IJMS25137031 [DOI: 10.3390/IJMS25137031]
  133. Naisi S, Bayat M, Salehi TZ, Zarif BR, Yahyaraeyat R (2023) Antimicrobial and anti-biofilm effects of carotenoid pigment extracted from Rhodotorula glutinis strain on food-borne bacteria. Iran J Microbiol 15(1):79. https://doi.org/10.18502/IJM.V15I1.11922 [DOI: 10.18502/IJM.V15I1.11922]
  134. Nakashima KI, Tomida J, Tsuboi T, Kawamura Y, Inoue M (2020) Muyocopronones A and B: azaphilones from the endophytic fungus Muyocopron laterale. Beilstein J Organ Chem 16(1):2100–2107. https://doi.org/10.3762/BJOC.16.177 [DOI: 10.3762/BJOC.16.177]
  135. Nakazato G, Gonçalves MC, da Silva das Neves M, Kobayashi RKT, Brocchi M, Durán N (2019) Violacein@Biogenic Ag system: synergistic antibacterial activity against Staphylococcus aureus. Biotechnol Lett 41(12):1433–1437. https://doi.org/10.1007/S10529-019-02745-8/METRICS [DOI: 10.1007/S10529-019-02745-8/METRICS]
  136. Naqvi SAR, Nadeem S, Komal S, Naqvi SAA, Mubarik MS, Qureshi SY, Ahmad S, Abbas A, Zahid M, Khan N-U-H, Raza SS, Aslam N, Naqvi SAR, Nadeem S, Komal S, Naqvi SAA, Mubarik MS, Qureshi SY, Ahmad S et al (2019) Antioxidants: natural antibiotics. Antioxidants. https://doi.org/10.5772/INTECHOPEN.84864 [DOI: 10.5772/INTECHOPEN.84864]
  137. Nascimento TC, Nass PP, Fernandes AS, Nörnberg ML, Zepka QZ, Jacob-Lopes E (2022) Microalgae carotenoids: an overview of biomedical applications. In: Algal biotechnology: integrated algal engineering for bioenergy, bioremediation, and biomedical applications, pp 409–425. https://doi.org/10.1016/B978-0-323-90476-6.00013-3
  138. Othman MA, El-Zamik FI, Hegazy MI, Salama ASA (2019) Isolation and identification of egyptian strains of Serratia marcescens producing antibacterial and antioxidant prodigiosin pigment. Zagazig J Agric Res 46(5):1573–1582. https://doi.org/10.2108/ZJAR.2019.48175 [DOI: 10.2108/ZJAR.2019.48175]
  139. Pak W, Takayama F, Mine M, Nakamoto K, Kodo Y, Mankura M, Egashira T, Kawasaki H, Mori A (2012) Anti-oxidative and anti-inflammatory effects of spirulina on rat model of non-alcoholic steatohepatitis. J Clin Biochem Nutr 51(3):227–234. https://doi.org/10.3164/JCBN.12-18 [DOI: 10.3164/JCBN.12-18]
  140. Park JH, Yeo IJ, Han JH, Suh JW, Lee HP, Hong JT (2018) Anti-inflammatory effect of astaxanthin in phthalic anhydride-induced atopic dermatitis animal model. Exp Dermatol 27(4):378–385. https://doi.org/10.1111/EXD.13437 [DOI: 10.1111/EXD.13437]
  141. Patel AK, Albarico FPJB, Perumal PK, Vadrale AP, Ntan CT, Chau HTB, Anwar C, un din Wani HM, Pal A, Saini R, Ha LH, Senthilkumar B, Tsang YS, Chen CW, Di Dong C, Singhania RR (2022) Algae as an emerging source of bioactive pigments. Bioresour Technol 351:126910. https://doi.org/10.1016/J.BIORTECH.2022.126910 [DOI: 10.1016/J.BIORTECH.2022.126910]
  142. Peng SJ, Li J, Zhou Y, Tuo M, Qin XX, Yu Q, Cheng H, Li YM (2017) In vitro effects and mechanisms of lycopene in MCF-7 human breast cancer cells. Genet Mol Res GMR. https://doi.org/10.4238/GMR16029434 [DOI: 10.4238/GMR16029434]
  143. Pleonsil P, Soogarun S, Suwanwong Y (2013) Anti-oxidant activity of holo- and apo-c-phycocyanin and their protective effects on human erythrocytes. Int J Biol Macromol 60:393–398. https://doi.org/10.1016/J.IJBIOMAC.2013.06.016 [DOI: 10.1016/J.IJBIOMAC.2013.06.016]
  144. Poorniammal R, Prabhu S (2022) Antimicrobial and wound healing potential of fungal pigments from Thermomyces sp. and Penicillium purpurogenum in wistar rats. Ann Phytomed Int J. https://doi.org/10.54085/ap.2022.11.1.42 [DOI: 10.54085/ap.2022.11.1.42]
  145. Qin Y, Xia Y (2024) Melanin in fungi: advances in structure, biosynthesis, regulation, and metabolic engineering. Microb Cell Factor 23(1):1–19. https://doi.org/10.1186/S12934-024-02614-8 [DOI: 10.1186/S12934-024-02614-8]
  146. Radzun KA, Rusmidi MHH, Aini MAM, Norisam I, Iran N, Pardi F, Ismail A, Razak W, Hafid SRA (2022) Anti-inflammatory effects of astaxanthin extracted from microalgae Hematococcus pluvialis and combinations with palm tocotrienol rich-fraction in RAW 264.7 macrophages. Pharmacogn J 14(1):205–215. https://doi.org/10.5530/pj.2022.14.26 [DOI: 10.5530/pj.2022.14.26]
  147. Rai V, Mathews G, Agrawal DK (2022) Translational and clinical significance of DAMPs, PAMPs, and PRRs in trauma-induced inflammation. Arch Clin Biomed Res 6(5):673. https://doi.org/10.26502/ACBR.50170279 [DOI: 10.26502/ACBR.50170279]
  148. Rajendran P, Somasundaram P, Dufossé L (2023) Microbial pigments: eco-friendly extraction techniques and some industrial applications. J Mol Struct 1290:135958. https://doi.org/10.1016/J.MOLSTRUC.2023.135958 [DOI: 10.1016/J.MOLSTRUC.2023.135958]
  149. Rather AH, Singh S, Choudhary S (2021) Antibacterial activity of Haematococcus pluvialis crude astaxanthin extract. J Drug Deliv Ther 11(2-S):28–30. https://doi.org/10.22270/JDDT.V11I2-S.4662 [DOI: 10.22270/JDDT.V11I2-S.4662]
  150. Rather LJ, Mir SS, Ganie SA, Shahid-ul-Islam, Li Q (2023) Research progress, challenges, and perspectives in microbial pigment production for industrial applications—a review. In: Dyes and pigments, vol 210. Elsevier Ltd, Amsterdam. https://doi.org/10.1016/j.dyepig.2022.110989
  151. Ren Y, Gong J, Fu R, Zhang J, Fang K, Liu X (2018) Antibacterial dyeing of silk with prodigiosins suspention produced by liquid fermentation. J Clean Prod 201:648–656. https://doi.org/10.1016/J.JCLEPRO.2018.08.098 [DOI: 10.1016/J.JCLEPRO.2018.08.098]
  152. Reyhani Poul S, Yeganeh S (2023) Nanoencapsulation of astaxanthin from Haematococcus pluvialis using maltodextrin-sodium caseinate coating and evaluation of antioxidant and antibacterial activities of the carrier nanocapsules. J Food Sci Technol. https://doi.org/10.22304/FSCT.20.140.52 [DOI: 10.22304/FSCT.20.140.52]
  153. Rodríguez-Luna A, Ávila-Román J, González-Rodríguez ML, Cózar MJ, Rabasco AM, Motilva V, Talero E (2018) Fucoxanthin-containing cream prevents epidermal hyperplasia and UVB-induced skin erythema in mice. Mar Drugs 16(10):378. https://doi.org/10.3390/MD16100378 [DOI: 10.3390/MD16100378]
  154. Sabdaningsih A, Liu Y, Mettal U, Heep J, Riyanti, Wang L, Cristianawati O, Nuryadi H, Sibero MT, Marner M, Radjasa OK, Sabdono A, Trianto A, Schäberle TF (2020) A new citrinin derivative from the indonesian marine sponge-associated fungus Penicillium citrinum. Mar Drugs 18(4):227. https://doi.org/10.3390/MD18040227 [DOI: 10.3390/MD18040227]
  155. Sabouri Z, Ghorbani P (2024) Investigating the antioxidant, cytotoxic and antimicrobial effects of a red pigment obtained from marine bacterial strain. SRPH J Med Sci Healthc Manag. https://doi.org/10.47176/sjmshm.6.1.1 [DOI: 10.47176/sjmshm.6.1.1]
  156. Sakai S, Nishida A, Ohno M, Inatomi O, Bamba S, Sugimoto M, Kawahara M, Andoh A (2019) Astaxanthin, a xanthophyll carotenoid, prevents development of dextran sulphate sodium-induced murine colitis. J Clin Biochem Nutr 64(1):66–72. https://doi.org/10.3164/JCBN.18-47 [DOI: 10.3164/JCBN.18-47]
  157. Sandmann G (2022) Carotenoids and their biosynthesis in fungi. Molecules. https://doi.org/10.3390/MOLECULES27041431 [DOI: 10.3390/MOLECULES27041431]
  158. Sartaj K, Gupta P, Tripathi S, Poluri KM, Prasad R (2022) Insights into the extraction, characterization and antifungal activity of astaxanthin derived from yeast de-oiled biomass. Environ Technol Innov 27:102437. https://doi.org/10.1016/J.ETI.2022.102437 [DOI: 10.1016/J.ETI.2022.102437]
  159. Sasidharan A, Sasidharan NK, Amma DBNS, Vasu RK, Nataraja AV, Bhaskaran K (2015) Antifungal activity of violacein purified from a novel strain of Chromobacterium sp. NIIST (MTCC 5522). J Microbiol (Seoul, Korea) 53(10):694–701. https://doi.org/10.1007/S12275-015-5173-6 [DOI: 10.1007/S12275-015-5173-6]
  160. Schwechheimer SK, Park EY, Revuelta JL, Becker J, Wittmann C (2016) Biotechnology of riboflavin. Appl Microbiol Biotechnol 100(5):2107–2119. https://doi.org/10.1007/S00253-015-7256-Z/METRICS [DOI: 10.1007/S00253-015-7256-Z/METRICS]
  161. Seelam SD, Agsar D, Sampath Kumar Halmuthur M, Reddy Shetty P, Vemireddy S, Reddy KM, Umesh MK, Rajitha CH (2021) Characterization and photoprotective potentiality of lime dwelling Pseudomonas mediated melanin as sunscreen agent against UV-B radiations. J Photochem Photobiol B Biol 216:112126. https://doi.org/10.1016/J.JPHOTOBIOL.2021.112126 [DOI: 10.1016/J.JPHOTOBIOL.2021.112126]
  162. Shahin YH, Elwakil BH, Ghareeb DA, Olama ZA (2022) Micrococcus lylae MW407006 pigment: production, optimization, nano-pigment synthesis, and biological activities. Biology. https://doi.org/10.3390/BIOLOGY11081171/S1 [DOI: 10.3390/BIOLOGY11081171/S1]
  163. Sharma C, Kamle M, Kumar P (2024) Microbial-derived carotenoids and their health benefits. Microbiol Res 15(3):1670–1689. https://doi.org/10.3390/MICROBIOLRES15030111 [DOI: 10.3390/MICROBIOLRES15030111]
  164. Songserm R, Nishiyama Y, Sanevas N (2024) Light influences the growth, pigment synthesis, photosynthesis capacity, and antioxidant activities in Scenedesmus falcatus. Scientifica 2024(1):1898624. https://doi.org/10.1155/2024/1898624 [DOI: 10.1155/2024/1898624]
  165. Soumya K, Narasimha Murthy K, Sreelatha GL, Tirumale S (2018) Characterization of a red pigment from Fusarium chlamydosporum exhibiting selective cytotoxicity against human breast cancer MCF-7 cell lines. J Appl Microbiol 125(1):148–158. https://doi.org/10.1111/JAM.13756 [DOI: 10.1111/JAM.13756]
  166. Spielman LJ, Little JP, Klegeris A (2014) Inflammation and insulin/IGF-1 resistance as the possible link between obesity and neurodegeneration. J Neuroimmunol 273(1–2):8–21. https://doi.org/10.1016/J.JNEUROIM.2014.06.004 [DOI: 10.1016/J.JNEUROIM.2014.06.004]
  167. Srilekha V, Krishna G, Sreelatha B, Jagadeesh Kumar E, Rajeshwari KVN (2024) Prodigiosin: a fascinating and the most versatile bioactive pigment with diverse applications. Syst Microbiol Biomanuf 4(1):66–76. https://doi.org/10.1007/s43393-023-00192-1 [DOI: 10.1007/s43393-023-00192-1]
  168. Stahmann KP, Revuelta JL, Seulberger H (2000) Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biotechnol 53(5):509–516. https://doi.org/10.1007/S002530051649/METRICS [DOI: 10.1007/S002530051649/METRICS]
  169. Strasky Z, Zemankova L, Nemeckova I, Rathouska J, Wong RJ, Muchova L, Subhanova I, Vanikova J, Vanova K, Vitek L, Nachtigal P (2013) Spirulina platensis and phycocyanobilin activate atheroprotective heme oxygenase-1: a possible implication for atherogenesis. Food Funct 4(11):1586–1594. https://doi.org/10.1039/C3FO60230C [DOI: 10.1039/C3FO60230C]
  170. Su J, Guan B, Su Q, Hu S, Wu S, Tong Z, Zhou F (2023) Fucoxanthin ameliorates sepsis via modulating microbiota by targeting IRF3 activation. Int J Mol Sci 24(18):13803. https://doi.org/10.3390/IJMS241813803 [DOI: 10.3390/IJMS241813803]
  171. Subramaniam S, Ravi V, Sivasubramanian A (2014) Synergistic antimicrobial profiling of violacein with commercial antibiotics against pathogenic microorganisms. Pharm Biol 52(1):86–90. https://doi.org/10.3109/13880209.2013.815634 [DOI: 10.3109/13880209.2013.815634]
  172. Sun H, Wang Y, He Y, Liu B, Mou H, Chen F, Yang S (2023) Microalgae-derived pigments for the food industry. Mar Drugs 21(2):82. https://doi.org/10.3390/MD21020082 [DOI: 10.3390/MD21020082]
  173. Sun XY, Dong H, Zhang Y, Gao JW, Zhou P, Sun C, Xu L (2024) Isolation and cultivation of carotenoid-producing strains from tidal flat sediment and proposal of Croceibacterium aestuarii sp. nov., a novel carotenoid-producing species in the family Erythrobacteraceae. J Mar Sci Eng 12(1):99. https://doi.org/10.3390/JMSE12010099/S1 [DOI: 10.3390/JMSE12010099/S1]
  174. Suryawanshi RK, Patil CD, Koli SH, Hallsworth JE, Patil SV (2017) Antimicrobial activity of prodigiosin is attributable to plasma-membrane damage. Nat Prod Res 31(5):572–577. https://doi.org/10.1080/14786419.2016.1195380 [DOI: 10.1080/14786419.2016.1195380]
  175. Terreni M, Taccani M, Pregnolato M (2021) New antibiotics for multidrug-resistant bacterial strains: latest research developments and future perspectives. Molecules 26(9):2671. https://doi.org/10.3390/MOLECULES26092671 [DOI: 10.3390/MOLECULES26092671]
  176. Thakur K, Tomar SK, De S (2016) Lactic acid bacteria as a cell factory for riboflavin production. Microb Biotechnol 9(4):441–451. https://doi.org/10.1111/1751-7915.12335 [DOI: 10.1111/1751-7915.12335]
  177. Vandamme EJ, Revuelta JL (2016) Industrial biotechnology of vitamins, biopigments, and antioxidants. Ind Biotechnol Vitamins Biopigm Antioxid. https://doi.org/10.1002/9783527681754 [DOI: 10.1002/9783527681754]
  178. Vasanthabharathi V, Lakshminarayanan R, Jayalakshmi S (2011) Melanin production from marine Streptomyces. Afr J Biotechnol 10(54):11224–11234. https://doi.org/10.5897/AJB11.296 [DOI: 10.5897/AJB11.296]
  179. Vendruscolo F, Tosin I, Giachini AJ, Schmidell W, Ninow JL (2014) Antimicrobial activity of monascus pigments produced in submerged fermentation. J Food Process Preserv 38(4):1860–1865. https://doi.org/10.1111/JFPP.12157 [DOI: 10.1111/JFPP.12157]
  180. Venil CK, Zakaria ZA, Ahmad WA (2013) Bacterial pigments and their applications. Process Biochem 48(7):1065–1079. https://doi.org/10.1016/J.PROCBIO.2013.06.006 [DOI: 10.1016/J.PROCBIO.2013.06.006]
  181. Verinaud L, Lopes SCP, Prado ICN, Zanucoli F, Da Costa TA, Di Gangi R, Issayama LK, Carvalho AC, Bonfanti AP, Niederauer GF, Duran N, Costa FTM, Oliveira ALR, Da Cruz Höfling MA, Machado DRS, Thomé R (2015) Violacein treatment modulates acute and chronic inflammation through the suppression of cytokine production and induction of regulatory T cells. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0125409 [DOI: 10.1371/JOURNAL.PONE.0125409]
  182. Vila E, Hornero-Méndez D, Lareo C, Saravia V (2020) Biotechnological production of zeaxanthin by an Antarctic Flavobacterium: evaluation of culture conditions. J Biotechnol 319:54–60. https://doi.org/10.1016/J.JBIOTEC.2020.05.014 [DOI: 10.1016/J.JBIOTEC.2020.05.014]
  183. Wang X, Willen R, Wadstrom T (2000) Astaxanthin-rich algal meal and vitamin C inhibit Helicobacter pylori infection in BALB/cA mice. Antimicrob Agents Chemother 44(9):2452–2457. https://doi.org/10.1128/AAC.44.9.2452-2457.2000/ASSET/B5AF4CE2-D506-448E-926F-1543ADB0D561/ASSETS/GRAPHIC/AC0901067004.JPEG [DOI: 10.1128/AAC.44.9.2452-2457.2000/ASSET/B5AF4CE2-D506-448E-926F-1543ADB0D561/ASSETS/GRAPHIC/AC0901067004.JPEG]
  184. Wang H, Mann PA, Xiao L, Gill C, Galgoci AM, Howe JA, Villafania A, Barbieri CM, Malinverni JC, Sher X, Mayhood T, McCurry MD, Murgolo N, Flattery A, Mack M, Roemer T (2017) Dual-targeting small-molecule inhibitors of the Staphylococcus aureus FMN riboswitch disrupt riboflavin homeostasis in an infectious setting. Cell Chem Biol 24(5):576-588.e6. https://doi.org/10.1016/J.CHEMBIOL.2017.03.014/ATTACHMENT/B18178B1-EE8C-46D1-9A6F-ECE4DE80C673/MMC2.PDF [DOI: 10.1016/J.CHEMBIOL.2017.03.014/ATTACHMENT/B18178B1-EE8C-46D1-9A6F-ECE4DE80C673/MMC2.PDF]
  185. Wang L, Li Y, Li Y (2019) Metal ions driven production, characterization and bioactivity of extracellular melanin from Streptomyces sp. ZL-24. Int J Biol Macromol 123:521–530. https://doi.org/10.1016/J.IJBIOMAC.2018.11.061 [DOI: 10.1016/J.IJBIOMAC.2018.11.061]
  186. Wang YJ, Wang W, You ZY, Liu XX (2022) Observation of synergistic antibacterial properties of prodigiosin from Serratia marcescens jx-1 with metal ions in clinical isolates of Staphylococcus aureus. Prep Biochem Biotechnol 52(3):344–350. https://doi.org/10.1080/10826068.2021.1944201 [DOI: 10.1080/10826068.2021.1944201]
  187. Wang Y, Liu J, Yi Y, Zhu L, Liu M, Zhang Z, Xie Q, Jiang L (2024) Insights into the synthesis, engineering, and functions of microbial pigments in Deinococcus bacteria. Front Microbiol 15:1447785. https://doi.org/10.3389/FMICB.2024.1447785/BIBTEX [DOI: 10.3389/FMICB.2024.1447785/BIBTEX]
  188. Weintraub S, Shpigel T, Harris LG, Schuster R, Lewis EC, Lewitus DY (2017) Astaxanthin-based polymers as new antimicrobial compounds. Polym Chem 8(29):4182–4189. https://doi.org/10.1039/C7PY00663B [DOI: 10.1039/C7PY00663B]
  189. Wu X, Fang LZ, Liu F-L, Pang XJ, Qin HL, Zhao T, Xu LL, Yang DF, Yang XL (2017) New prenylxanthones, polyketide hemiterpenoid pigments from the endophytic fungus Emericella sp. XL029 and their anti-agricultural pathogenic fungal and antibacterial activities. RSC Adv 7(49):31115–31122. https://doi.org/10.1039/C7RA04762B [DOI: 10.1039/C7RA04762B]
  190. Wu S, Chen R, Chen J, Yang N, Li K, Zhang Z, Zhang R (2023) Study of the anti-inflammatory mechanism of β-carotene based on network pharmacology. Molecules. https://doi.org/10.3390/MOLECULES28227540 [DOI: 10.3390/MOLECULES28227540]
  191. Xian PJ, Liu SZ, Wang WJ, Yang SX, Feng Z, Yang XL (2022) Undescribed specialised metabolites from the endophytic fungus Emericella sp. XL029 and their antimicrobial activities. Phytochemistry. https://doi.org/10.1016/J.PHYTOCHEM.2022.113303 [DOI: 10.1016/J.PHYTOCHEM.2022.113303]
  192. Xuan RR, Niu TT, Chen HM (2016) Astaxanthin blocks preeclampsia progression by suppressing oxidative stress and inflammation. Mol Med Rep 14(3):2697–2704. https://doi.org/10.3892/MMR.2016.5569 [DOI: 10.3892/MMR.2016.5569]
  193. Yadav S, Tiwari KS, Gupta C, Tiwari MK, Khan A, Sonkar SP (2023) A brief review on natural dyes, pigments: Recent advances and future perspectives. Results Chem 5:100733. https://doi.org/10.1016/J.RECHEM.2022.100733 [DOI: 10.1016/J.RECHEM.2022.100733]
  194. Yang G, Lee HE, Moon SJ, Ko KM, Koh JH, Seok JK, Min JK, Heo TH, Kang HC, Cho YY, Lee HS, Fitzgerald KA, Lee JY (2020a) Direct binding to NLRP3 pyrin domain as a novel strategy to prevent NLRP3-driven inflammation and gouty arthritis. Arthritis Rheumatol 72(7):1192–1202. https://doi.org/10.1002/ART.41245 [DOI: 10.1002/ART.41245]
  195. Yang YP, Tong QY, Zheng SH, Zhou MD, Zeng YM, Zhou TT (2020b) Anti-inflammatory effect of fucoxanthin on dextran sulfate sodium-induced colitis in mice. Nat Prod Res 34(12):1791–1795. https://doi.org/10.1080/14786419.2018.1528593 [DOI: 10.1080/14786419.2018.1528593]
  196. Yip CH, Mahalingam S, Wan KL, Nathan S (2021) Prodigiosin inhibits bacterial growth and virulence factors as a potential physiological response to interspecies competition. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0253445 [DOI: 10.1371/JOURNAL.PONE.0253445]
  197. Zhang Z, Guo C, Jiang H, Han B, Wang X, Li S, Lv Y, Lv Z, Zhu Y (2020) Inflammation response after the cessation of chronic arsenic exposure and post-treatment of natural astaxanthin in liver: potential role of cytokine-mediated cell–cell interactions. Food Funct 11(10):9252–9262. https://doi.org/10.1039/D0FO01223H [DOI: 10.1039/D0FO01223H]
  198. Zhou L, Ouyang L, Lin S, Chen S, Liu YJ, Zhou W, Wang X (2018) Protective role of β-carotene against oxidative stress and neuroinflammation in a rat model of spinal cord injury. Int Immunopharmacol 61:92–99. https://doi.org/10.1016/J.INTIMP.2018.05.022 [DOI: 10.1016/J.INTIMP.2018.05.022]
  199. Zhu L, Song Y, Liu H, Wu M, Gong H, Lan H, Zheng X (2021) Gut microbiota regulation and anti-inflammatory effect of β-carotene in dextran sulfate sodium-stimulated ulcerative colitis in rats. J Food Sci 86(5):2118–2130. https://doi.org/10.1111/1750-3841.15684 [DOI: 10.1111/1750-3841.15684]

MeSH Term

Pigments, Biological
Drug Industry
Humans
Bacteria
Anti-Infective Agents
Anti-Inflammatory Agents
Antioxidants
Fungi
Antineoplastic Agents

Chemicals

Pigments, Biological
Anti-Infective Agents
Anti-Inflammatory Agents
Antioxidants
Antineoplastic Agents

Word Cloud

Created with Highcharts 10.0.0pigmentsapplicationsvariousmicrobialMicrobialmicroorganismspotentialpharmaceuticalincludingantimicrobialanti-inflammatorydifferentusecurrentdiversegroupcompoundssynthesizedattractedconsiderablescientificinterestduemultifacetedbiologicalpropertiessignificantdemonstrateactivitiesantioxidantanticancereffectsoftenmediatedintricateinteractionscellularcomponentsmembranesproteinsdeoxyribonucleicacidDNAexamplecancompromisemembraneintegrityinhibitproteinsynthesismodulatekeysignalingpathwaysinvolvedinflammationreviewexplorescapableproducingFurthermoreexaminestechnologicalpharmaceuticalscommercialadditionclinicalcasesdemonstratingefficacytherapeuticcontextswillpresentedMovingforwardpoisedplaypivotalroledrugdevelopmentbiomedicalofferingsustainablesolutionschallengesmedicineindustryApplicationindustry:statusopportunitiesAnti-inflammatoryAntimicrobialAntioxidant

Similar Articles

Cited By