Active R-RAS2/TC21 prevents cell cycle arrest and morphological alterations in mouse embryonic fibroblasts lacking RAS proteins.

Isabel Fern��ndez-Pisonero, L Francisco Lorenzo-Mart��n, Mattias Drosten, Eugenio Santos, Mariano Barbacid, Balbino Alarc��n, Xos�� R Bustelo
Author Information
  1. Isabel Fern��ndez-Pisonero: Molecular Mechanisms of Cancer Program, Centro de Investigaci��n del C��ncer, CSIC and Universidad de Salamanca, Salamanca, Spain. ORCID
  2. L Francisco Lorenzo-Mart��n: Molecular Mechanisms of Cancer Program, Centro de Investigaci��n del C��ncer, CSIC and Universidad de Salamanca, Salamanca, Spain. ORCID
  3. Mattias Drosten: Molecular Mechanisms of Cancer Program, Centro de Investigaci��n del C��ncer, CSIC and Universidad de Salamanca, Salamanca, Spain. ORCID
  4. Eugenio Santos: Molecular Mechanisms of Cancer Program, Centro de Investigaci��n del C��ncer, CSIC and Universidad de Salamanca, Salamanca, Spain. ORCID
  5. Mariano Barbacid: Centro de Investigaci��n Biom��dica en Red de C��ncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
  6. Balbino Alarc��n: Centro de Biolog��a Molecular Severo Ochoa, CSIC and Universidad Aut��noma de Madrid, Madrid, Spain. ORCID
  7. Xos�� R Bustelo: Molecular Mechanisms of Cancer Program, Centro de Investigaci��n del C��ncer, CSIC and Universidad de Salamanca, Salamanca, Spain. xbustelo@usal.es. ORCID

Abstract

R-RAS2/TC21, a member of the R-RAS subfamily of GTP-binding proteins, shares structural and signaling properties with the RAS subfamily proteins H-, K-, and N-RAS. However, little information is available regarding its role in normal cells and the level of functional redundancy with R-RAS and classical RAS proteins. In this work, we used loss and gain-of-function approaches to assess these issues in mouse embryonic fibroblasts (MEFs). Using primary MEFs from Rras2, Rras or Rras; Rras2 embryos, we show here that endogenous R-RAS2/TC21 is required for activation of the phosphatidylinositol 3 kinase (PI3K)-AKT axis, the proliferation, and the adhesion properties of these cells. Endogenous R-RAS does not influence any of these cell parameters. We also show that the depletion of R-RAS2/TC21 worsens the proliferative and morphological defects elicited by the combined loss of H-, K- and N-RAS proteins in MEFs. Conversely, the ectopic expression of an active version of R-RAS2/TC21, but not of R-RAS, overcomes such defects. This rescue activity involves the inhibition of the tumor suppressor TP53 and is PI3K-, mTORC-, and MEK/ERK-dependent. These results indicate that R-RAS2/TC21, R-RAS, and RAS subfamily GTPases play different roles in MEFs. They also show that R-RAS2 provides subsidiary signals that are essential for the short-term proliferation and long-term viability of MEFs lacking RAS signaling.

References

  1. Drivas GT, Shih A, Coutavas E, Rush MG, D���Eustachio P. Characterization of four novel ras-like genes expressed in a human teratocarcinoma cell line. Mol Cell Biol. 1990;10:1793���8. [PMID: 2108320]
  2. Weber SM, Carroll SL. The role of R-Ras proteins in normal and pathologic migration and morphologic change. Am J Pathol. 2021;191:1499���510. [PMID: 34111428]
  3. Fern��ndez-Pisonero I, Clava��n L, Robles-Valero J, Lorenzo-Mart��n LF, Caloto R, Nieto B, et al. A hotspot mutation targeting the R-RAS2 GTPase acts as a potent oncogenic driver in a wide spectrum of tumors. Cell Rep. 2022;38:110522. [PMID: 35294890]
  4. Niihori T, Nagai K, Fujita A, Ohashi H, Okamoto N, Okada S, et al. Germline-activating RRAS2 mutations cause Noonan syndrome. Am J Hum Genet. 2019;104:1233���40. [PMID: 31130285]
  5. Hortal AM, Oeste CL, Cifuentes C, Alcoceba M, Fern��ndez-Pisonero I, Clava��n L, et al. Overexpression of wild type RRAS2, without oncogenic mutations, drives chronic lymphocytic leukemia. Mol Cancer. 2022;21:35. [PMID: 35120522]
  6. Cifuentes C, Oeste CL, Fernandez-Pisonero I, Hortal AM, Garcia-Macias C, Hochart J, et al. Unmutated RRAS2 emerges as a key oncogene in post-partum-associated triple negative breast cancer. Mol Cancer. 2024;23:142. [PMID: 38987766]
  7. Clava��n L, Fern��ndez-Pisonero I, Movilla N, Lorenzo-Mart��n LF, Nieto B, Abad A, et al. Characterization of mutant versions of the R-RAS2/TC21 GTPase found in tumors. Oncogene. 2023;42:389���405. [PMID: 36476833]
  8. Furuhjelm J, Per��nen J. The C-terminal end of R-Ras contains a focal adhesion targeting signal. J Cell Sci. 2003;116:3729���38. [PMID: 12890755]
  9. Ohba Y, Mochizuki N, Yamashita S, Chan AM, Schrader JW, Hattori S, et al. Regulatory proteins of R-Ras, TC21/R-Ras2, and M-Ras/R-Ras3. J Biol Chem. 2000;275:20020���6. [PMID: 10777492]
  10. Graham SM, Cox AD, Drivas G, Rush MG, D���Eustachio P, Der CJ. Aberrant function of the Ras-related protein TC21/R-Ras2 triggers malignant transformation. Mol Cell Biol. 1994;14:4108���15. [PMID: 8196649]
  11. Movilla N, Crespo P, Bustelo XR. Signal transduction elements of TC21, an oncogenic member of the R-Ras subfamily of GTP-binding proteins. Oncogene. 1999;18:5860���9. [PMID: 10557073]
  12. Graham SM, Oldham SM, Martin CB, Drugan JK, Zohn IE, Campbell S, et al. TC21 and Ras share indistinguishable transforming and differentiating activities. Oncogene. 1999;18:2107���16. [PMID: 10321735]
  13. Lowe DG, Goeddel DV. Heterologous expression and characterization of the human R-ras gene product. Mol Cell Biol. 1987;7:2845���56. [PMID: 3313005]
  14. Saez R, Chan AM, Miki T, Aaronson SA. Oncogenic activation of human R-ras by point mutations analogous to those of prototype H-ras oncogenes. Oncogene. 1994;9:2977���82. [PMID: 8084601]
  15. Cox AD, Brtva TR, Lowe DG, Der CJ. R-Ras induces malignant, but not morphologic, transformation of NIH3T3 cells. Oncogene. 1994;9:3281���8. [PMID: 7936652]
  16. Calvo F, Crespo P. Structural and spatial determinants regulating TC21 activation by RasGRF family nucleotide exchange factors. Mol Biol Cell. 2009;20:4289���302. [PMID: 19692568]
  17. Zhang X, Spiegelman NA, Nelson OD, Jing H, Lin H SIRT6 regulates Ras-related protein R-Ras2 by lysine defatty-acylation. Elife. 2017;6:4302
  18. L��pez-Barahona M, Bustelo XR, Barbacid M. The TC21 oncoprotein interacts with the Ral guanosine nucleotide dissociation factor. Oncogene. 1996;12:463���70. [PMID: 8637701]
  19. Rosario M, Paterson HF, Marshall CJ. Activation of the Raf/MAP kinase cascade by the Ras-related protein TC21 is required for the TC21-mediated transformation of NIH 3T3 cells. EMBO J. 1999;18:1270���9. [PMID: 10064593]
  20. Larive RM, Abad A, Cardaba CM, Hernandez T, Canamero M, de Alava E, et al. The Ras-like protein R-Ras2/TC21 is important for proper mammary gland development. Mol Biol Cell. 2012;23:2373���87. [PMID: 22535521]
  21. Graham SM, Vojtek AB, Huff SY, Cox AD, Clark GJ, Cooper JA, et al. TC21 causes transformation by Raf-independent signaling pathways. Mol Cell Biol. 1996;16:6132���40. [PMID: 8887643]
  22. Patmore DM, Welch S, Fulkerson PC, Wu J, Choi K, Eaves D, et al. In vivo regulation of TGF-beta by R-Ras2 revealed through loss of the RasGAP protein NF1. Cancer Res. 2012;72:5317���27. [PMID: 22918885]
  23. Huang Y, Rangwala F, Fulkerson PC, Ling B, Reed E, Cox AD, et al. Role of TC21/R-Ras2 in enhanced migration of neurofibromin-deficient Schwann cells. Oncogene. 2004;23:368���78. [PMID: 14724565]
  24. Drosten M, Dhawahir A, Sum EY, Urosevic J, Lechuga CG, Esteban LM, et al. Genetic analysis of Ras signalling pathways in cell proliferation, migration and survival. EMBO J. 2010;29:1091���104. [PMID: 20150892]
  25. Drosten M, Barbacid M. Ras and p53: an unsuspected liaison. Mol Cell Oncol. 2016;3:e996001. [PMID: 27308624]
  26. Drosten M, Sum EY, Lechuga CG, Sim��n-Carrasco L, Jacob HK, Garc��a-Medina R, et al. Loss of p53 induces cell proliferation via Ras-independent activation of the Raf/Mek/Erk signaling pathway. Proc Natl Acad Sci USA. 2014;111:15155���60. [PMID: 25288756]
  27. Hunter JC, Manandhar A, Carrasco MA, Gurbani D, Gondi S, Westover KD. Biochemical and structural analysis of common cancer-associated KRAS mutations. Mol Cancer Res. 2015;13:1325���35. [PMID: 26037647]
  28. Lowe SW, Ruley HE, Jacks T, Housman DE. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell. 1993;74:957���67. [PMID: 8402885]
  29. Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE, et al. p53 status and the efficacy of cancer therapy in vivo. Science. 1994;266:807���10. [PMID: 7973635]
  30. Delgado P, Cubelos B, Calleja E, Martinez-Martin N, Cipres A, Merida I, et al. Essential function for the GTPase TC21 in homeostatic antigen receptor signaling. Nat Immunol. 2009;10:880���8. [PMID: 19561613]
  31. Singh G, Hashimoto D, Yan X, Helft J, Park PJ, Ma G, et al. R-Ras is required for murine dendritic cell maturation and CD4+ T-cell priming. Blood. 2012;119:1693���701. [PMID: 22174156]
  32. Wennstrom S, Downward J. Role of phosphoinositide 3-kinase in activation of ras and mitogen-activated protein kinase by epidermal growth factor. Mol Cell Biol. 1999;19:4279���88. [PMID: 10330169]
  33. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. [PMID: 25605792]
  34. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1���13. [PMID: 19033363]
  35. Huang-da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44���57. [PMID: 19131956]
  36. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545���50. [PMID: 16199517]
  37. Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. GenePattern 2.0. Nat Genet. 2006;38:500���1. [PMID: 16642009]

Grants

  1. GC16173472GARC/Fundaci��n Cient��fica Asociaci��n Espa��ola Contra el C��ncer (Scientific Foundation, Spanish Association Against Cancer)
  2. EPAEC222641CICS/Fundaci��n Cient��fica Asociaci��n Espa��ola Contra el C��ncer (Scientific Foundation, Spanish Association Against Cancer)
  3. EPAEC222641CICS/Fundaci��n Cient��fica Asociaci��n Espa��ola Contra el C��ncer (Scientific Foundation, Spanish Association Against Cancer)
  4. CSI018P23/Consejer��a de Educaci��n, Junta de Castilla y Le��n (Consejer��a de Educaci��n de la Junta de Castilla y Le��n)
  5. CLU-2023-2-01/Consejer��a de Educaci��n, Junta de Castilla y Le��n (Consejer��a de Educaci��n de la Junta de Castilla y Le��n)
  6. PID2021-122666OB-I00/Ministry of Economy and Competitiveness | Agencia Estatal de Investigaci��n (Spanish Agencia Estatal de Investigaci��n)
  7. PLEC2022-009217/Ministry of Economy and Competitiveness | Agencia Estatal de Investigaci��n (Spanish Agencia Estatal de Investigaci��n)
  8. HR20-00164/"la Caixa" Foundation (Caixa Foundation)

Word Cloud

Created with Highcharts 10.0.0R-RAS2/TC21R-RASproteinsRASMEFssubfamilyshowsignalingpropertiesH-K-N-RAScellslossmouseembryonicfibroblastsRras2RrasproliferationcellalsomorphologicaldefectslackingmemberGTP-bindingsharesstructuralHoweverlittleinformationavailableregardingrolenormallevelfunctionalredundancyclassicalworkusedgain-of-functionapproachesassessissuesUsingprimaryembryosendogenousrequiredactivationphosphatidylinositol3kinasePI3K-AKTaxisadhesionEndogenousinfluenceparametersdepletionworsensproliferativeelicitedcombinedConverselyectopicexpressionactiveversionovercomesrescueactivityinvolvesinhibitiontumorsuppressorTP53PI3K-mTORC-MEK/ERK-dependentresultsindicateGTPasesplaydifferentrolesR-RAS2providessubsidiarysignalsessentialshort-termlong-termviabilityActivepreventscyclearrestalterations

Similar Articles

Cited By

No available data.