Clc-db: an open-source online database of chiral ligands and catalysts.

Gufeng Yu, Kaiwen Yu, Xi Wang, Chenxi Zhang, Yicong Luo, Xiaohong Huo, Yang Yang
Author Information
  1. Gufeng Yu: Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
  2. Kaiwen Yu: Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
  3. Xi Wang: Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
  4. Chenxi Zhang: Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
  5. Yicong Luo: Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
  6. Xiaohong Huo: Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China. huoxiaohong@sjtu.edu.cn.
  7. Yang Yang: Department of Computer Science and Engineering, and Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China. yangyang@cs.sjtu.edu.cn.

Abstract

The design and optimization of chiral ligands and catalysts are fundamental to advancing asymmetric catalysis, a critical area in organic chemistry with wide-ranging impacts across scientific disciplines. Traditional experimental approaches, while essential, are often hindered by their slow pace and complexity. Recent advancements have demonstrated that computational methods, particularly machine learning, offer transformative potential by significantly accelerating these processes through enhanced prediction and modeling capabilities. However, limitations such as data scarcity and model inaccuracies continue to challenge their broader application. To address these issues, we present the Chiral Ligand and Catalyst Database (CLC-DB), the first open-source, comprehensive database specifically designed for chiral ligands and catalysts. CLC-DB contains 1,861 molecules spanning 32 distinctive chiral ligand and catalyst categories, with each entry annotated with 34 types of curated information, validated by chemical experts and linked to authoritative chemical databases. The database features a user-friendly interface that supports efficient single and batch searches, as well as an integrated, high-performance online molecular clustering tool to facilitate computational analyses. CLC-DB is freely accessible at https://compbio.sjtu.edu.cn/services/clc-db , where all data are available for download.

Keywords

References

  1. J Chem Theory Comput. 2006 Mar;2(2):364-82 [PMID: 26626525]
  2. J Med Chem. 2017 Sep 14;60(17):7393-7409 [PMID: 28731335]
  3. Chem Soc Rev. 2006 Mar;35(3):226-36 [PMID: 16505917]
  4. Science. 2018 Mar 2;359(6379): [PMID: 29496846]
  5. Science. 2017 Feb 3;355(6324):477-480 [PMID: 28154048]
  6. J Chem Inf Model. 2016 Jun 27;56(6):1132-8 [PMID: 27243272]
  7. J Comput Chem. 2012 Feb 15;33(5):580-92 [PMID: 22162017]
  8. J Am Chem Soc. 2015 Nov 25;137(46):14594-7 [PMID: 26540202]
  9. Chem Commun (Camb). 2009 Dec 28;(48):7447-64 [PMID: 20024250]
  10. Chem Sci. 2022 Oct 25;13(46):13782-13794 [PMID: 36544722]
  11. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2008-22 [PMID: 19746595]
  12. Chem Soc Rev. 2012 Apr 21;41(8):3153-67 [PMID: 22306968]
  13. Annu Rev Phys Chem. 2020 Apr 20;71:361-390 [PMID: 32092281]
  14. Nucleic Acids Res. 2023 Jan 6;51(D1):D1373-D1380 [PMID: 36305812]
  15. Sci Adv. 2019 Nov 08;5(11):eaay4275 [PMID: 31723607]
  16. Chem Rev. 2013 May 8;113(5):3248-96 [PMID: 23461563]
  17. Nucleic Acids Res. 2016 Jan 4;44(D1):D1214-9 [PMID: 26467479]
  18. Chem Rev. 2016 Dec 14;116(23):14769-14827 [PMID: 27960269]
  19. Chem Rev. 2003 Aug;103(8):3071-100 [PMID: 12914492]
  20. Drug Discov Today Technol. 2019 Dec;32-33:19-27 [PMID: 33386090]
  21. Chem Rev. 2006 Jul;106(7):2734-93 [PMID: 16836298]
  22. Acc Chem Res. 2007 Dec;40(12):1278-90 [PMID: 17506517]
  23. Angew Chem Int Ed Engl. 2021 Oct 11;60(42):22804-22811 [PMID: 34370892]
  24. Bioinformatics. 2015 Apr 15;31(8):1322-4 [PMID: 25505090]
  25. J Am Chem Soc. 2022 Jan 26;144(3):1205-1217 [PMID: 35020383]
  26. J Am Chem Soc. 2023 Jun 14;145(23):12870-12883 [PMID: 37266999]
  27. Chem Soc Rev. 2021 Mar 7;50(5):3211-3237 [PMID: 33480901]
  28. Phys Chem Chem Phys. 2005 Sep 21;7(18):3297-305 [PMID: 16240044]
  29. Angew Chem Int Ed Engl. 2021 Apr 19;60(17):9192-9204 [PMID: 33196141]
  30. Chem Rev. 2007 Dec;107(12):5713-43 [PMID: 18072808]
  31. Chem Rev. 2024 Jul 24;124(14):8657-8739 [PMID: 38954764]
  32. Chem Rev. 2011 Mar 9;111(3):1713-60 [PMID: 21166392]
  33. Chem Rev. 2007 Nov;107(11):4863-90 [PMID: 17927256]
  34. J Chem Phys. 2024 Aug 28;161(8): [PMID: 39189657]
  35. Science. 2021 Nov 26;374(6571):1134-1140 [PMID: 34822285]
  36. J Cheminform. 2013 May 30;5(1):26 [PMID: 23721588]

Grants

  1. Nos. 62272300/National Natural Science Foundation of China
  2. Nos. 21831005/National Natural Science Foundation of China
  3. Nos. 21831005/National Natural Science Foundation of China
  4. Nos. 21831005/National Natural Science Foundation of China
  5. Nos. 21831005/National Natural Science Foundation of China
  6. Nos. 21831005/National Natural Science Foundation of China
  7. Nos. 62272300/National Natural Science Foundation of China
  8. No. 2023YFC2811500/National Key Research and Development Program of China
  9. No. 2018YFE0126800/National Key Research and Development Program of China
  10. No. 2018YFE0126800/National Key Research and Development Program of China
  11. No. 2018YFE0126800/National Key Research and Development Program of China
  12. No. 2018YFE0126800/National Key Research and Development Program of China
  13. No. 2018YFE0126800/National Key Research and Development Program of China
  14. No. 2023YFC2811500/National Key Research and Development Program of China

Word Cloud

Created with Highcharts 10.0.0chiralChiraldatabaseligandscatalystsCLC-DBcatalystdesigncomputationaldataopen-sourceligandchemicalonlineoptimizationfundamentaladvancingasymmetriccatalysiscriticalareaorganicchemistrywide-rangingimpactsacrossscientificdisciplinesTraditionalexperimentalapproachesessentialoftenhinderedslowpacecomplexityRecentadvancementsdemonstratedmethodsparticularlymachinelearningoffertransformativepotentialsignificantlyacceleratingprocessesenhancedpredictionmodelingcapabilitiesHoweverlimitationsscarcitymodelinaccuraciescontinuechallengebroaderapplicationaddressissuespresentLigandCatalystDatabasefirstcomprehensivespecificallydesignedcontains1861moleculesspanning32distinctivecategoriesentryannotated34typescuratedinformationvalidatedexpertslinkedauthoritativedatabasesfeaturesuser-friendlyinterfacesupportsefficientsinglebatchsearcheswellintegratedhigh-performancemolecularclusteringtoolfacilitateanalysesfreelyaccessiblehttps://compbiosjtueducn/services/clc-dbavailabledownloadClc-db:Open-source

Similar Articles

Cited By