A systematic review and comparative evaluation to develop and validate a comprehensive framework for cancer surveillance systems.

Mohsen Soleimani, Marjan GhaziSaeedi, Seyed Mohammad Ayyoubzadeh, Ahmad Jalilvand
Author Information
  1. Mohsen Soleimani: Department of Health Information Management and Medical Informatics, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran. mohsensoleymani66@gmail.com. ORCID
  2. Marjan GhaziSaeedi: Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran. ORCID
  3. Seyed Mohammad Ayyoubzadeh: Department of Health Information Management and Medical Informatics, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran. ORCID
  4. Ahmad Jalilvand: Department of Pathology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran. ORCID

Abstract

BACKGROUND: The increasing global burden of cancer necessitates robust cancer surveillance systems to generate accurate and comprehensive data for effective public health interventions. Despite advancements, significant gaps remain in data standardization, interoperability, and adaptability to diverse healthcare settings. This study aims to develop and validate a comprehensive framework for cancer surveillance systems that addresses these gaps, ensuring enhanced global applicability and regional relevance.
METHODS: A systematic review was conducted following PRISMA guidelines, analyzing 13 studies selected from an initial pool of 1,085 articles retrieved from five major databases: PubMed, Embase, Scopus, Web of Science, and IEEE. Additionally, a comparative evaluation of 13 international cancer surveillance systems was performed to identify critical data elements and practices. Key indicators were extracted. A researcher-designed checklist consolidating these elements was validated through expert consultation with a response rate of 82% (n = 14), achieving high reliability (Cronbach's alpha = 0.849).
RESULTS: The proposed framework addresses critical gaps in existing cancer surveillance systems by integrating a comprehensive set of epidemiological indicators, including incidence, prevalence, mortality, survival rates, years lived with disability, and years of life lost, calculated using multiple standard populations for age-standardized rates. Furthermore, the framework incorporates key demographic filters such as age, sex, and geographic location to enable stratified analyses. It also includes advanced data elements, such as cancer type classification based on ICD-O standards, ensuring precision, consistency, and enhanced comparability across diverse cancer datasets.
CONCLUSION: The validated framework provides a structured and adaptable approach to cancer data collection and analysis, enhancing public health decision-making and resource allocation. By addressing current limitations, this study offers a significant advancement in cancer surveillance methodologies, with potential applications in diverse healthcare contexts globally.
CLINICAL TRIAL REGISTRATION: Clinical trial number: Not applicable.

Keywords

References

  1. JCO Clin Cancer Inform. 2021 Jan;5:24-29 [PMID: 33411623]
  2. PLoS Med. 2009 Jul 21;6(7):e1000097 [PMID: 19621072]
  3. Oncologist. 2018 Aug;23(8):871-873 [PMID: 30049884]
  4. Eur J Cancer Prev. 2017 Sep;26(5):447-452 [PMID: 26919133]
  5. CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
  6. JAMA. 2017 Jan 24;317(4):365-367 [PMID: 28118434]
  7. JMIR Public Health Surveill. 2021 Feb 15;7(2):e21401 [PMID: 33587043]
  8. Cell. 2018 Apr 5;173(2):283-285 [PMID: 29625045]
  9. J Med Internet Res. 2020 Apr 17;22(4):e16533 [PMID: 32077858]
  10. Lancet. 2018 Mar 17;391(10125):1023-1075 [PMID: 29395269]
  11. BMJ Open. 2022 Apr 18;12(4):e056441 [PMID: 35437248]
  12. Eur Urol Open Sci. 2021 Aug 14;32:8-18 [PMID: 34667954]
  13. J Clin Oncol. 2012 Mar 20;30(9):904-6 [PMID: 22355063]
  14. Ann Surg Oncol. 2024 Sep;31(9):5546-5559 [PMID: 38717542]
  15. Int J Health Geogr. 2020 Dec 4;19(1):54 [PMID: 33276785]
  16. BMC Med Inform Decis Mak. 2022 Apr 6;22(1):91 [PMID: 35387655]
  17. CA Cancer J Clin. 2019 Jan;69(1):35-49 [PMID: 30376182]
  18. JMIR Public Health Surveill. 2021 Jun 29;7(6):e23990 [PMID: 34185010]
  19. JBI Evid Synth. 2023 Mar 01;21(3):478-493 [PMID: 36121230]
  20. Am J Respir Crit Care Med. 2013 Sep 1;188(5):593-9 [PMID: 23805824]
  21. Cancer Causes Control. 2005 Nov;16(9):1009-19 [PMID: 16184466]
  22. Health Informatics J. 2019 Mar;25(1):149-160 [PMID: 28438105]
  23. CA Cancer J Clin. 2022 Jan;72(1):7-33 [PMID: 35020204]
  24. Online J Public Health Inform. 2019 Sep 19;11(2):e3 [PMID: 31632597]
  25. Stud Health Technol Inform. 2003;95:788-93 [PMID: 14664084]
  26. Acta Inform Med. 2014 Dec;22(6):402-5 [PMID: 25684850]
  27. Front Psychol. 2022 Dec 22;13:1074430 [PMID: 36619096]
  28. Cancer Res. 2023 Apr 14;83(8):1175-1182 [PMID: 36625843]
  29. Sci Rep. 2023 Sep 11;13(1):14947 [PMID: 37696987]
  30. BMC Public Health. 2019 May 2;19(1):486 [PMID: 31046731]
  31. Lancet Oncol. 2017 Aug;18(8):1022-1039 [PMID: 28687376]
  32. Health Serv Insights. 2013 Nov 19;6:111-6 [PMID: 25114567]
  33. CA Cancer J Clin. 2019 May;69(3):184-210 [PMID: 30875085]
  34. Lancet Oncol. 2020 Jul;21(7):e342-e349 [PMID: 32615118]
  35. Natl Vital Stat Rep. 2001 May 18;49(2):1-32 [PMID: 11381674]
  36. Eur J Cancer. 2009 Mar;45(5):756-64 [PMID: 19128954]
  37. Cancer. 2017 Dec 15;123 Suppl 24:4969-4976 [PMID: 29205307]
  38. JMIR Hum Factors. 2017 Aug 04;4(3):e19 [PMID: 28778842]
  39. Lancet. 2020 Oct 17;396(10258):1204-1222 [PMID: 33069326]
  40. Cancer. 2025 Jan 1;131(1):e35590 [PMID: 39552258]
  41. Health Place. 2010 Mar;16(2):321-30 [PMID: 19959392]
  42. J Natl Cancer Inst Monogr. 2014 Nov;2014(49):265-74 [PMID: 25417240]
  43. Ann Oncol. 2009 Mar;20(3):556-63 [PMID: 19073863]

Word Cloud

Created with Highcharts 10.0.0cancersurveillancesystemsdataframeworkcomprehensivehealthgapsdiverseelementsindicatorsglobalpublicsignificantstandardizationhealthcarestudydevelopvalidateaddressesensuringenhancedsystematicreview13comparativeevaluationcriticalvalidatedratesyearsBACKGROUND:increasingburdennecessitatesrobustgenerateaccurateeffectiveinterventionsDespiteadvancementsremaininteroperabilityadaptabilitysettingsaimsapplicabilityregionalrelevanceMETHODS:conductedfollowingPRISMAguidelinesanalyzingstudiesselectedinitialpool1085articlesretrievedfivemajordatabases:PubMedEmbaseScopusWebScienceIEEEAdditionallyinternationalperformedidentifypracticesKeyextractedresearcher-designedchecklistconsolidatingexpertconsultationresponserate82%n = 14achievinghighreliabilityCronbach'salpha = 0849RESULTS:proposedexistingintegratingsetepidemiologicalincludingincidenceprevalencemortalitysurvivalliveddisabilitylifelostcalculatedusingmultiplestandardpopulationsage-standardizedFurthermoreincorporateskeydemographicfiltersagesexgeographiclocationenablestratifiedanalysesalsoincludesadvancedtypeclassificationbasedICD-OstandardsprecisionconsistencycomparabilityacrossdatasetsCONCLUSION:providesstructuredadaptableapproachcollectionanalysisenhancingdecision-makingresourceallocationaddressingcurrentlimitationsoffersadvancementmethodologiespotentialapplicationscontextsgloballyCLINICALTRIALREGISTRATION:Clinicaltrialnumber:applicableCancerDataEpidemiologicalPublicSurveillance

Similar Articles

Cited By