A Picky Predator and Its Prey: How Snow Conditions and Ptarmigan Abundance Impact Gyrfalcon Feeding Behaviour and Breeding Success.

Annabel Josien Slettenhaar, Jan Eivind Østnes, Børje Cato Moen, Rolf Terje Kroglund, Torgeir Nygård, Erlend Birkeland Nilsen
Author Information
  1. Annabel Josien Slettenhaar: Faculty of Bioscience and Aquaculture Nord University Steinkjer Norway. ORCID
  2. Jan Eivind Østnes: Faculty of Bioscience and Aquaculture Nord University Steinkjer Norway. ORCID
  3. Børje Cato Moen: Naturporten Nordli Norway. ORCID
  4. Rolf Terje Kroglund: Faculty of Bioscience and Aquaculture Nord University Steinkjer Norway. ORCID
  5. Torgeir Nygård: Norwegian Institute for Nature Research Trondheim Norway. ORCID
  6. Erlend Birkeland Nilsen: Faculty of Bioscience and Aquaculture Nord University Steinkjer Norway. ORCID

Abstract

Species interactions can be altered by climate change but can also mediate its effects. The gyrfalcon () and the ptarmigan ( spp.) form a predator-prey couple that reflects the dynamics of boreal, tundra, and alpine ecosystems. To determine how climate change may impact the alpine food web, we investigated how ptarmigan abundance and local weather impact gyrfalcon diet and feeding behaviour, nest occupancy, and reproductive success. Using wildlife cameras, we monitored gyrfalcon nests throughout the nestling period to collect data on diet and feeding behaviour. We quantified the gyrfalcon's functional response by describing how ptarmigan kill rates relate to ptarmigan density. Additionally, we quantified the gyrfalcon's numerical demographic and aggregative response by describing how gyrfalcon reproductive success and nest occupancy, respectively, were related to ptarmigan density, using data from large-scale monitoring projects. Ptarmigan were the dominant prey species, representing 98% of the diet. The proportion of ptarmigan in the gyrfalcon diet and gyrfalcon breeding success increased in springs with more snow, but breeding success decreased with more snow during the nestling period. Gyrfalcon reproductive success was positively related to ptarmigan density, but gyrfalcon nest occupancy and the ptarmigan kill rate were not related to ptarmigan density. These results indicate that the effect of climate change is not straightforward, and investigating how (a)biotic factors impact both prey and predator is relevant in predicting how a predator will respond to climate change. Following current climate predictions, spring will occur earlier, which will change the food-web structure through prey availability and diversity and through interactions with other species. This requires adaptations from gyrfalcons and other predators. We emphasise that the impact of climate change on predators and other species can be more accurately evaluated on a multi-species level rather than individually.

Keywords

References

  1. PLoS One. 2016 Feb 05;11(2):e0148632 [PMID: 26849356]
  2. Animals (Basel). 2023 Jan 28;13(3): [PMID: 36766342]
  3. J Exp Zool A Ecol Integr Physiol. 2024 May;341(4):327-337 [PMID: 38247310]
  4. Proc Biol Sci. 2019 Nov 6;286(1914):20192227 [PMID: 31662087]
  5. Bull Environ Contam Toxicol. 1984 Apr;32(4):453-9 [PMID: 6713140]
  6. BMC Ecol. 2018 Oct 3;18(1):41 [PMID: 30285717]
  7. Philos Trans R Soc Lond B Biol Sci. 2002 Sep 29;357(1425):1233-48 [PMID: 12396515]
  8. Trends Ecol Evol. 2022 Mar;37(3):203-210 [PMID: 34799145]
  9. Nature. 2015 Sep 24;525(7570):515-8 [PMID: 26374998]
  10. Glob Chang Biol. 2014 Apr;20(4):1126-35 [PMID: 24353147]
  11. Nature. 2003 Jan 2;421(6918):37-42 [PMID: 12511946]
  12. PLoS One. 2013 Nov 19;8(11):e81598 [PMID: 24260581]
  13. Proc Biol Sci. 2020 Dec 23;287(1941):20202653 [PMID: 33352076]
  14. Proc Biol Sci. 2013 Jan 7;280(1750):20121890 [PMID: 23075836]
  15. Glob Chang Biol. 2020 Feb;26(2):642-657 [PMID: 31436007]
  16. Curr Opin Insect Sci. 2017 Oct;23:28-34 [PMID: 29129279]
  17. PLoS One. 2016 Jul 15;11(7):e0158913 [PMID: 27420478]
  18. Science. 2016 Nov 11;354(6313): [PMID: 27846577]
  19. R Soc Open Sci. 2023 May 24;10(5):221427 [PMID: 37234506]
  20. Trends Ecol Evol. 2010 Jun;25(6):325-31 [PMID: 20392517]
  21. Oecologia. 2007 Sep;153(3):555-61 [PMID: 17549523]
  22. J Anim Ecol. 2009 Jul;78(4):741-51 [PMID: 19486380]
  23. Ecol Lett. 2023 Apr;26(4):658-673 [PMID: 36798988]
  24. Ecol Evol. 2018 Nov 28;8(24):12425-12434 [PMID: 30619555]
  25. Ecology. 2019 Apr;100(4):e02627 [PMID: 30698842]
  26. Sci Rep. 2020 Apr 24;10(1):6987 [PMID: 32332914]
  27. Ambio. 2020 Mar;49(3):749-761 [PMID: 31073984]
  28. Sci Rep. 2019 Mar 29;9(1):5312 [PMID: 30926855]
  29. R Soc Open Sci. 2024 Feb 28;11(2):231518 [PMID: 38420626]

Word Cloud

Created with Highcharts 10.0.0ptarmiganclimatechangegyrfalconsuccessimpactdietresponsedensitycannestoccupancyreproductiverelatedpreyspecieswillinteractionssppdynamicsalpinefeedingbehaviournestlingperioddataquantifiedgyrfalcon'sfunctionaldescribingkillnumericalPtarmiganbreedingsnowGyrfalconpredatorpredatorsSpeciesalteredalsomediateeffectsformpredator-preycouplereflectsborealtundraecosystemsdeterminemayfoodwebinvestigatedabundancelocalweatherUsingwildlifecamerasmonitoredneststhroughoutcollectratesrelateAdditionallydemographicaggregativerespectivelyusinglarge-scalemonitoringprojectsdominantrepresenting98%proportionincreasedspringsdecreasedpositivelyrateresultsindicateeffectstraightforwardinvestigatingbioticfactorsrelevantpredictingrespondFollowingcurrentpredictionsspringoccurearlierfood-webstructureavailabilitydiversityrequiresadaptationsgyrfalconsemphasiseaccuratelyevaluatedmulti-specieslevelratherindividuallyPickyPredatorPrey:SnowConditionsAbundanceImpactFeedingBehaviourBreedingSuccessFalcorusticolusLagopuspredator–prey

Similar Articles

Cited By