MSCSCC-Net: multi-scale contextual spatial-channel correlation network for forgery detection and localization of JPEG-compressed image.

Wuyang Shan, Jingchuan Yue, Steven X Ding, Junying Qiu
Author Information
  1. Wuyang Shan: Chengdu University of Technology, Chengdu, 610059, China. shanwuyang@cdut.edu.cn.
  2. Jingchuan Yue: Chengdu University of Technology, Chengdu, 610059, China.
  3. Steven X Ding: University of Duisburg-Essen, 47057, Duisburg, Germany.
  4. Junying Qiu: Sichuan Normal University, Chengdu, 610068, China.

Abstract

JPEG artifacts produced during the JPEG compression may obscure forgery artifacts, impairing the efficiency of regular forgery detection and localization approaches. To address the issue, we introduce a Multi-Scale Contextual Spatial-Channel Correlation Network, which has been designed for detecting and locating forgeries. Our MSCSCC-Net uses multi-scale mechanisms, which improves forgery detection and localization performance by better handling the scale variation of the forged areas and further helps to remove JPEG artifacts from forgery artifacts at different scales. We design a contextual spatial correlation module (CSCM) and a contextual channel correlation module (CCCM) to generate contextual spatial-channel features at different scales, with the aim of distinguishing between JPEG artifacts, forgery artifacts, and authentic regions. Finally, use the fused features to detect forgery and generate a predicted mask in a coarse-to-fine progression. Besides, we also use the fused features to generate a restored image and make the removal of JPEG artifacts a task of our network, ensuring the retention of forgery artifacts during the removal process. Extensive experimental results demonstrate our MSCSCC Net's advantages over the most advanced approach in forgery detection and localization of JPEG compressed images.

Keywords

References

  1. IEEE Trans Image Process. 2019 Jul;28(7):3286-3300 [PMID: 30703026]
  2. IEEE Trans Pattern Anal Mach Intell. 2023 Mar;45(3):3121-3138 [PMID: 37022469]
  3. Sci Rep. 2024 Oct 30;14(1):26166 [PMID: 39477969]
  4. IEEE Trans Pattern Anal Mach Intell. 2021 Oct;43(10):3349-3364 [PMID: 32248092]
  5. Sci Rep. 2023 Oct 18;13(1):17764 [PMID: 37853065]
  6. Sci Rep. 2024 Dec 28;14(1):31084 [PMID: 39730641]
  7. Sci Rep. 2024 Oct 29;14(1):25954 [PMID: 39472624]
  8. IEEE Trans Image Process. 2017 Jul;26(7):3142-3155 [PMID: 28166495]
  9. Sci Rep. 2022 Sep 2;12(1):14987 [PMID: 36056097]
  10. Sci Rep. 2025 Jan 15;15(1):2051 [PMID: 39814841]
  11. Sci Rep. 2024 Nov 26;14(1):29330 [PMID: 39592806]
  12. Sci Rep. 2024 Feb 21;14(1):4272 [PMID: 38383573]
  13. Sci Rep. 2023 May 8;13(1):7422 [PMID: 37156887]

Word Cloud

Created with Highcharts 10.0.0forgeryartifactsJPEGdetectionlocalizationcontextualcorrelationgeneratefeaturescompressionmulti-scaledifferentscalesmodulespatial-channelusefusedimageremovalnetworkmechanismproducedmayobscureimpairingefficiencyregularapproachesaddressissueintroduceMulti-ScaleContextualSpatial-ChannelCorrelationNetworkdesigneddetectinglocatingforgeriesMSCSCC-NetusesmechanismsimprovesperformancebetterhandlingscalevariationforgedareashelpsremovedesignspatialCSCMchannelCCCMaimdistinguishingauthenticregionsFinallydetectpredictedmaskcoarse-to-fineprogressionBesidesalsorestoredmaketaskensuringretentionprocessExtensiveexperimentalresultsdemonstrateMSCSCCNet'sadvantagesadvancedapproachcompressedimagesMSCSCC-Net:JPEG-compressedAttentionImageJpegrecoveryMultiscale

Similar Articles

Cited By