| URL: | http://www.MITOMAP.org |
| Full name: | A database for the human mitochondrial genome |
| Description: | MITOMAP (http://www.MITOMAP.org), a database for the human mitochondrial genome, has grown rapidly in data content over the past several years as interest in the role of mitochondrial DNA (mtDNA) variation in human origins, forensics, degenerative diseases, cancer and aging has increased dramatically. |
| Year founded: | 1996 |
| Last update: | 2020-09-01 |
| Version: | |
| Accessibility: |
Accessible
|
| Country/Region: | United States |
| Data type: | |
| Data object: | |
| Database category: | |
| Major species: | |
| Keywords: |
| University/Institution: | University of California Irvine |
| Address: | CA 92697, USA |
| City: | Irvine |
| Province/State: | CA |
| Country/Region: | United States |
| Contact name (PI/Team): | Marty C. Brandon |
| Contact email (PI/Helpdesk): | mbrandon@uci.edu |
|
mtDNA Variation and Analysis Using Mitomap and Mitomaster. [PMID: 25489354]
The Mitomap database of human mitochondrial DNA (mtDNA) information has been an important compilation of mtDNA variation for researchers, clinicians and genetic counselors for the past twenty-five years. The Mitomap protocol shows how users may look up human mitochondrial gene loci, search for public mitochondrial sequences, and browse or search for reported general population nucleotide variants as well as those reported in clinical disease. Within Mitomap is the powerful sequence analysis tool for human mitochondrial DNA, Mitomaster. The Mitomaster protocol gives step-by-step instructions showing how to submit sequences to identify nucleotide variants relative to the rCRS, to determine the haplogroup, and to view species conservation. User-supplied sequences, GenBank identifiers and single nucleotide variants may be analyzed. |
|
An enhanced MITOMAP with a global mtDNA mutational phylogeny. [PMID: 17178747]
The MITOMAP (http://www.mitomap.org) data system for the human mitochondrial genome has been greatly enhanced by the addition of a navigable mutational mitochondrial DNA (mtDNA) phylogenetic tree of approximately 3000 mtDNA coding region sequences plus expanded pathogenic mutation tables and a nuclear-mtDNA pseudogene (NUMT) data base. The phylogeny reconstructs the entire mutational history of the human mtDNA, thus defining the mtDNA haplogroups and differentiating ancient from recent mtDNA mutations. Pathogenic mutations are classified by both genotype and phenotype, and the NUMT sequences permits detection of spurious inclusion of pseudogene variants during mutation analysis. These additions position MITOMAP for the implementation of our automated mtDNA sequence analysis system, Mitomaster. |
|
MITOMAP: a human mitochondrial genome database--2004 update. [PMID: 15608272]
MITOMAP (http://www.MITOMAP.org), a database for the human mitochondrial genome, has grown rapidly in data content over the past several years as interest in the role of mitochondrial DNA (mtDNA) variation in human origins, forensics, degenerative diseases, cancer and aging has increased dramatically. To accommodate this information explosion, MITOMAP has implemented a new relational database and an improved search engine, and all programs have been rewritten. System administrative changes have been made to improve security and efficiency, and to make MITOMAP compatible with a new automatic mtDNA sequence analyzer known as Mitomaster. |
|
MITOMAP: a human mitochondrial genome database--1998 update. [PMID: 9399813]
We have continued to develop MITOMAP (http://www.gen.emory. edu/MITOMAP ), a comprehensive database for the human mitochondrial DNA (mtDNA). MITOMAP uses the mtDNA sequence as the unifying element for bringing together information on mitochondrial genome structure and function, pathogenic mutations and their clinical characteristics, population associated variation, and gene-gene interactions. Over the past year we have increased the degree of interlinking of MITOMAP information available on the web page, by using our generalized information management system, GENOME. As increasingly larger regions of the human genome are sequenced and characterized, the need for integrating such information is growing. Consequently, MITOMAP and GENOME provide a valuable reference for the mitochondrial biologist, in addition to being a model for the development of comprehensive, information storage and retrieval systems for other components of the human genome. This paper documents the changes to MITOMAP which have been implemented over the past year. |
|
MITOMAP: an update on the status of the human mitochondrial genome database. [PMID: 9016535]
We have continued to develop MITOMAP, a comprehensive database for the human mitochondrial DNA (mtDNA). MITOMAP uses the mtDNA sequence as the unifying element for bringing together information on mitochondrial genome structure and function, pathogenic mutations and their clinical characteristics, population associated variation and gene-gene interactions. As increasingly larger regions of the human genome are sequenced and characterized, the need for integrating such information will grow. Consequently, MITOMAP not only provides a valuable reference for the mitochondrial biologist, it will also provide a model for the development of comprehensive, multi-media information storage and retrieval systems for other components of the human genome. This paper is an update of the changes which have occurred to MITOMAP over the past year. |
|
MITOMAP: a human mitochondrial genome database. [PMID: 8594574]
We have developed a comprehensive database (MITOMAP) for the human mitochondrial DNA (mtDNA), the first component of the human genome to be completely sequenced [Anderson et al. (1981) Nature 290, 457-465]. MITOMAP uses the mtDNA sequence as the unifying element for bringing together information on mitochondrial genome structure and function, pathogenic mutations and their clinical characteristics, population associated variation, and gene- gene interactions. As increasingly larger regions of the human genome are sequenced and characterized, the need for integrating such information will grow. Consequently, MITOMAP not only provides a valuable reference for the mitochondrial biologist, it may also provide a model for the development of information storage and retrieval systems for other components of the human genome. |