| URL: | http://www.actrec.gov.in/pi-webpages/AmitDutt/TMCSNP/TMCSNPdp.html |
| Full name: | Tata Memorial Centre-SNP data base |
| Description: | An Indian germline variant database derived from whole exome sequences. |
| Year founded: | 2016 |
| Last update: | 2022-05-11 |
| Version: | v2.0 |
| Accessibility: |
Accessible
|
| Country/Region: | India |
| Data type: | |
| Data object: | |
| Database category: | |
| Major species: | |
| Keywords: |
| University/Institution: | Tata Memorial Centre |
| Address: | Integrated Genomics Laboratory |
| City: | Navi Mumbai |
| Province/State: | |
| Country/Region: | India |
| Contact name (PI/Team): | Amit Dutt |
| Contact email (PI/Helpdesk): | adutt@actrec.gov.in |
|
TMC-SNPdb 2.0: an ethnic-specific database of Indian germline variants. [PMID: 35551364]
Cancer is a somatic disease. The lack of Indian-specific reference germline variation resources limits the ability to identify true cancer-associated somatic variants among Indian cancer patients. We integrate two recent studies, the GenomeAsia 100K and the Genomics for Public Health in India (IndiGen) program, describing genome sequence variations across 598 and 1029 healthy individuals of Indian origin, respectively, along with the unique variants generated from our in-house 173 normal germline samples derived from cancer patients to generate the Tata Memorial Centre-SNP database (TMC-SNPdb) 2.0. To show its utility, GATK/Mutect2-based somatic variant calling was performed on 224 in-house tumor samples to demonstrate a reduction in false-positive somatic variants. In addition to the ethnic-specific variants from GenomeAsia 100K and IndiGenomes databases, 305 132 unique variants generated from 173 in-house normal germline samples derived from cancer patients of Indian origin constitute the Indian specific, TMC-SNPdb 2.0. Of 305 132 unique variants, 11.13% were found in the coding region with missense variants (31.3%) as the most predominant category. Among the non-coding variations, intronic variants (49%) were the highest contributors. The non-synonymous to synonymous SNP ratio was observed to be 1.9, consistent with the previous version of TMC-SNPdb and literature. Using TMC SNPdb 2.0, we analyzed a whole-exome sequence from 224 in-house tumor samples (180 paired and 44 orphans). We show an average depletion of 3.44% variants per paired tumor and significantly higher depletion (P-value < 0.001) for orphan tumors (4.21%), demonstrating the utility of the rare, unique variants found in the ethnic-specific variant datasets in reducing the false-positive somatic mutations. TMC-SNPdb 2.0 is the most exhaustive open-source reference database of germline variants occurring across 1800 Indian individuals to analyze cancer genomes and other genetic disorders. The database and toolkit package is available for download at the following: Database URL http://www.actrec.gov.in/pi-webpages/AmitDutt/TMCSNPdb2/TMCSNPdb2.html. |
|
TMC-SNPdb: an Indian germline variant database derived from whole exome sequences. [PMID: 27402678]
Cancer is predominantly a somatic disease. A mutant allele present in a cancer cell genome is considered somatic when it's absent in the paired normal genome along with public SNP databases. The current build of dbSNP, the most comprehensive public SNP database, however inadequately represents several non-European Caucasian populations, posing a limitation in cancer genomic analyses of data from these populations. We present the T: ata M: emorial C: entre-SNP D: ata B: ase (TMC-SNPdb), as the first open source, flexible, upgradable, and freely available SNP database (accessible through dbSNP build 149 and ANNOVAR)-representing 114 309 unique germline variants-generated from whole exome data of 62 normal samples derived from cancer patients of Indian origin. The TMC-SNPdb is presented with a companion subtraction tool that can be executed with command line option or using an easy-to-use graphical user interface with the ability to deplete additional Indian population specific SNPs over and above dbSNP and 1000 Genomes databases. Using an institutional generated whole exome data set of 132 samples of Indian origin, we demonstrate that TMC-SNPdb could deplete 42, 33 and 28% false positive somatic events post dbSNP depletion in Indian origin tongue, gallbladder, and cervical cancer samples, respectively. Beyond cancer somatic analyses, we anticipate utility of the TMC-SNPdb in several Mendelian germline diseases. In addition to dbSNP build 149 and ANNOVAR, the TMC-SNPdb along with the subtraction tool is available for download in the public domain at the following:Database URL: http://www.actrec.gov.in/pi-webpages/AmitDutt/TMCSNP/TMCSNPdp.html. © The Author(s) 2016. Published by Oxford University Press. |