| URL: | http://ppdb.tc.cornell.edu |
| Full name: | The Plant Proteome Database |
| Description: | PPDB is a Plant Proteome DataBase for Arabidopsis thaliana and maize (Zea mays). Initially PPDB was dedicated to plant plastids, but has now expanded to the whole plant proteome. |
| Year founded: | 2004 |
| Last update: | |
| Version: | |
| Accessibility: |
Accessible
|
| Country/Region: | United States |
| Data type: | |
| Data object: | |
| Database category: |
|
| Major species: | |
| Keywords: |
| University/Institution: | Cornell University |
| Address: | |
| City: | Ithaca |
| Province/State: | State of New York |
| Country/Region: | United States |
| Contact name (PI/Team): | Klaas J. van Wijk |
| Contact email (PI/Helpdesk): | kv35@cornell.edu |
|
PPDB, the Plant Proteomics Database at Cornell. [PMID: 18832363]
The Plant Proteomics Database (PPDB; http://ppdb.tc.cornell.edu), launched in 2004, provides an integrated resource for experimentally identified proteins in Arabidopsis and maize (Zea mays). Internal BLAST alignments link maize and Arabidopsis information. Experimental identification is based on in-house mass spectrometry (MS) of cell type-specific proteomes (maize), or specific subcellular proteomes (e.g. chloroplasts, thylakoids, nucleoids) and total leaf proteome samples (maize and Arabidopsis). So far more than 5000 accessions both in maize and Arabidopsis have been identified. In addition, more than 80 published Arabidopsis proteome datasets from subcellular compartments or organs are stored in PPDB and linked to each locus. Using MS-derived information and literature, more than 1500 Arabidopsis proteins have a manually assigned subcellular location, with a strong emphasis on plastid proteins. Additional new features of PPDB include searchable posttranslational modifications and searchable experimental proteotypic peptides and spectral count information for each identified accession based on in-house experiments. Various search methods are provided to extract more than 40 data types for each accession and to extract accessions for different functional categories or curated subcellular localizations. Protein report pages for each accession provide comprehensive overviews, including predicted protein properties, with hyperlinks to the most relevant databases. |
|
Analysis of curated and predicted plastid subproteomes of Arabidopsis. Subcellular compartmentalization leads to distinctive proteome properties. [PMID: 15208420]
Carefully curated proteomes of the inner envelope membrane, the thylakoid membrane, and the thylakoid lumen of chloroplasts from Arabidopsis were assembled based on published, well-documented localizations. These curated proteomes were evaluated for distribution of physical-chemical parameters, with the goal of extracting parameters for improved subcellular prediction and subsequent identification of additional (low abundant) components of each membrane system. The assembly of rigorously curated subcellular proteomes is in itself also important as a parts list for plant and systems biology. Transmembrane and subcellular prediction strategies were evaluated using the curated data sets. The three curated proteomes differ strongly in average isoelectric point and protein size, as well as transmembrane distribution. Removal of the cleavable, N-terminal transit peptide sequences greatly affected isoelectric point and size distribution. Unexpectedly, the Cys content was much lower for the thylakoid proteomes than for the inner envelope. This likely relates to the role of the thylakoid membrane in light-driven electron transport and helps to avoid unwanted oxidation-reduction reactions. A rule of thumb for discriminating between the predicted integral inner envelope membrane and integral thylakoid membrane proteins is suggested. Using a combination of predictors and experimentally derived parameters, four plastid subproteomes were predicted from the fully annotated Arabidopsis genome. These predicted subproteomes were analyzed for their properties and compared to the curated proteomes. The sensitivity and accuracy of the prediction strategies are discussed. Data can be extracted from the new plastid proteome database (http://ppdb.tc.cornell.edu). |
|
In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database. [PMID: 14729914]
An extensive analysis of the Arabidopsis thaliana peripheral and integral thylakoid membrane proteome was performed by sequential extractions with salt, detergent, and organic solvents, followed by multidimensional protein separation steps (reverse-phase HPLC and one- and two-dimensional electrophoresis gels), different enzymatic and nonenzymatic protein cleavage techniques, mass spectrometry, and bioinformatics. Altogether, 154 proteins were identified, of which 76 (49%) were alpha-helical integral membrane proteins. Twenty-seven new proteins without known function but with predicted chloroplast transit peptides were identified, of which 17 (63%) are integral membrane proteins. These new proteins, likely important in thylakoid biogenesis, include two rubredoxins, a potential metallochaperone, and a new DnaJ-like protein. The data were integrated with our analysis of the lumenal-enriched proteome. We identified 83 out of 100 known proteins of the thylakoid localized photosynthetic apparatus, including several new paralogues and some 20 proteins involved in protein insertion, assembly, folding, or proteolysis. An additional 16 proteins are involved in translation, demonstrating that the thylakoid membrane surface is an important site for protein synthesis. The high coverage of the photosynthetic apparatus and the identification of known hydrophobic proteins with low expression levels, such as cpSecE, Ohp1, and Ohp2, indicate an excellent dynamic resolution of the analysis. The sequential extraction process proved very helpful to validate transmembrane prediction. Our data also were cross-correlated to chloroplast subproteome analyses by other laboratories. All data are deposited in a new curated plastid proteome database (PPDB) with multiple search functions (http://cbsusrv01.tc.cornell.edu/users/ppdb/). This PPDB will serve as an expandable resource for the plant community. |