Database Commons
Database Commons

a catalog of worldwide biological databases

Database Profile

Soybean proteome database

General information

URL: http://proteome.dc.affrc.go.jp/Soybean
Full name:
Description: Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database
Year founded: 2009
Last update:
Version:
Accessibility:
Unaccessible
Country/Region: Japan

Classification & Tag

Data type:
Data object:
Database category:
Major species:
Keywords:

Contact information

University/Institution: National Institute of Crop Science
Address:
City:
Province/State:
Country/Region: Japan
Contact name (PI/Team): Setsuko Komatsu
Contact email (PI/Helpdesk): skomatsu@affrc.go.jp

Publications

28499913
Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database. [PMID: 28499913]
Komatsu S, Wang X, Yin X, Nanjo Y, Ohyanagi H, Sakata K.

The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max 'Enrei'). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/.
BIOLOGICAL SIGNIFICANCE: The Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all predicted proteins from genome sequences, though there are over lapped proteins. Based on the demonstrated application of data stored in the database for functional analyses, it is suggested that these data will be useful for analyses of biological mechanisms in soybean. Furthermore, coupled with recent advances in information and communication technology, the usefulness of this database would increase in the analyses of biological mechanisms.

J Proteomics. 2017:163() | 13 Citations (from Europe PMC, 2025-12-13)
22661982
Soybean Proteome Database 2012: update on the comprehensive data repository for soybean proteomics. [PMID: 22661982]
Ohyanagi H, Sakata K, Komatsu S.

The Soybean Proteome Database (SPD) was created to provide a data repository for functional analyses of soybean responses to flooding stress, thought to be a major constraint for establishment and production of this plant. Since the last publication of the SPD, we thoroughly enhanced the contents of database, particularly protein samples and their annotations from several organelles. The current release contains 23 reference maps of soybean (Glycine max cv. Enrei) proteins collected from several organs, tissues, and organelles including the maps for plasma membrane, cell wall, chloroplast, and mitochondrion, which were analyzed by two-dimensional polyacrylamide gels. Furthermore, the proteins analyzed with gel-free proteomics technique have been added and are available online. In addition to protein fluctuations under flooding, those of salt and drought stress have been included in the current release. A case analysis employing a portion of those newly released data was conducted, and the results will be shown. An 'omics table has also been provided to reveal relationships among mRNAs, proteins, and metabolites with a unified temporal-profile tag in order to facilitate retrieval of the data based on the temporal profiles. An intuitive user interface based on dynamic HTML enables users to browse the network as well as the profiles of the multiple "omes" in an integrated fashion. The SPD is available at: http://proteome.dc.affrc.go.jp/Soybean/

Front Plant Sci. 2012:3() | 22 Citations (from Europe PMC, 2025-12-13)
19489578
Soybean proteome database: a data resource for plant differential omics. [PMID: 19489578]
Sakata K, Ohyanagi H, Nobori H, Nakamura T, Hashiguchi A, Nanjo Y, Mikami Y, Yunokawa H, Komatsu S.

The Soybean Proteome Database aims to be a data repository for functional analyses of soybean responses to flooding injury, recognized as a major constraint for establishment and production of this plant. The current release contains 21 reference maps of soybean (Glycine max cv. Enrei) proteins electrophoresed on two-dimensional polyacrylamide gels of which the samples were collected from several organs, tissues and organelles. These reference maps include 7311 detected proteins and 532 identified proteins, or proteins for which a sequence or peptide peak has been determined. The database is searchable by protein properties such as accession number, description and isoelectric point and molecular weight range. The Soybean Proteome Database also integrates multiple "omes". An omics table reveals relationships among 106 mRNAs, 51 proteins and 89 metabolites that vary over time under flooding stress. The tabulated metabolites are anchored to a metabolome network. A unified temporal-profile tag attached to the mRNAs, proteins and metabolites facilitates retrieval of the data based on the temporal expression profiles. A graphical user interface based on dynamic HTML facilitates viewing the metabolome network as well as the profiles of multiple omes in a uniform manner. The entire database is available at http://proteome.dc.affrc.go.jp/Soybean/.

J Proteome Res. 2009:8(7) | 36 Citations (from Europe PMC, 2025-12-13)

Ranking

All databases:
2672/6895 (61.262%)
Expression:
549/1347 (59.317%)
Structure:
377/967 (61.117%)
2672
Total Rank
67
Citations
4.188
z-index

Community reviews

Not Rated
Data quality & quantity:
Content organization & presentation
System accessibility & reliability:

Word cloud

Related Databases

Citing
Cited by

Record metadata

Created on: 2018-01-27
Curated by:
Zhuang Xiong [2018-02-23]