| URL: | http://www.ebi.ac.uk/enzymeportal/ |
| Full name: | The EBI Enzyme Portal |
| Description: | The Enzyme Portal is for those interested in the biology of enzymes and proteins with enzymatic activity. It integrates publicly available information about enzymes, such as small-molecule chemistry, biochemical pathways and drug compounds. |
| Year founded: | 2013 |
| Last update: | NA |
| Version: | v1.0 |
| Accessibility: |
Accessible
|
| Country/Region: | United Kingdom |
| Data type: | |
| Data object: |
NA
|
| Database category: | |
| Major species: |
NA
|
| Keywords: |
| University/Institution: | European Bioinformatics Institute |
| Address: | Wellcome Trust Genome Campus,Hinxton,Cambridgeshire CB10 1SD,UK |
| City: | Cambridge |
| Province/State: | Cambridgeshire |
| Country/Region: | United Kingdom |
| Contact name (PI/Team): | Maria Martin |
| Contact email (PI/Helpdesk): | martin@ebi.ac.uk |
|
An update on the Enzyme Portal: an integrative approach for exploring enzyme knowledge. [PMID: 28158609]
Enzymes are a key part of life processes and are increasingly important for various areas of research such as medicine, biotechnology, bioprocessing and drug research. The goal of the Enzyme Portal is to provide an interface to all European Bioinformatics Institute (EMBL-EBI) data about enzymes (de Matos, P., et al. , (2013), BMC Bioinformatics , (1), 103). These data include enzyme function, sequence features and family classification, protein structure, reactions, pathways, small molecules, diseases and the associated literature. The sources of enzyme data are: the UniProt Knowledgebase (UniProtKB) (UniProt Consortium, 2015), the Protein Data Bank in Europe (PDBe), (Valenkar, S., et al ., Nucleic Acids Res. 2016; , D385-D395) Rhea-a database of enzyme-catalysed reactions (Morgat, A., et al ., Nucleic Acids Res. 2015; , D459-D464), Reactome-a database of biochemical pathways (Fabregat, A., et al ., Nucleic Acids Res. 2016; , D481-D487), IntEnz-a resource with enzyme nomenclature information (Fleischmann, A., et al ., Nucleic Acids Res. 2004 , D434-D437) and ChEBI (Hastings, J., et al ., Nucleic Acids Res. 2013) and ChEMBL (Bento, A. P., et al ., Nucleic Acids Res. 2014 , 1083-1090)-resources which contain information about small-molecule chemistry and bioactivity. This article describes the redesign of Enzyme Portal and the increased functionality added to maximise integration and interpretation of these data. Use case examples of the Enzyme Portal and the versatile workflows its supports are illustrated. We welcome the suggestion of new resources for integration. |
|
The EBI enzyme portal. [PMID: 23175605]
The availability of comprehensive information about enzymes plays an important role in answering questions relevant to interdisciplinary fields such as biochemistry, enzymology, biofuels, bioengineering and drug discovery. At the EMBL European Bioinformatics Institute, we have developed an enzyme portal (http://www.ebi.ac.uk/enzymeportal) to provide this wealth of information on enzymes from multiple in-house resources addressing particular data classes: protein sequence and structure, reactions, pathways and small molecules. The fact that these data reside in separate databases makes information discovery cumbersome. The main goal of the portal is to simplify this process for end users. |
|
The Enzyme Portal: a case study in applying user-centred design methods in bioinformatics. [PMID: 23514033]
User-centred design (UCD) is a type of user interface design in which the needs and desires of users are taken into account at each stage of the design process for a service or product; often for software applications and websites. Its goal is to facilitate the design of software that is both useful and easy to use. To achieve this, you must characterise users' requirements, design suitable interactions to meet their needs, and test your designs using prototypes and real life scenarios.For bioinformatics, there is little practical information available regarding how to carry out UCD in practice. To address this we describe a complete, multi-stage UCD process used for creating a new bioinformatics resource for integrating enzyme information, called the Enzyme Portal (http://www.ebi.ac.uk/enzymeportal). This freely-available service mines and displays data about proteins with enzymatic activity from public repositories via a single search, and includes biochemical reactions, biological pathways, small molecule chemistry, disease information, 3D protein structures and relevant scientific literature.We employed several UCD techniques, including: persona development, interviews, 'canvas sort' card sorting, user workflows, usability testing and others. Our hope is that this case study will motivate the reader to apply similar UCD approaches to their own software design for bioinformatics. Indeed, we found the benefits included more effective decision-making for design ideas and technologies; enhanced team-working and communication; cost effectiveness; and ultimately a service that more closely meets the needs of our target audience. |