| URL: | http://www.ncbi.nlm.nih.gov/pubmed |
| Full name: | PubMed |
| Description: | PubMed comprises more than 28 million citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites |
| Year founded: | 2011 |
| Last update: | 2020 |
| Version: | 2.0 |
| Accessibility: |
Accessible
|
| Country/Region: | United States |
| Data type: | |
| Data object: |
NA
|
| Database category: | |
| Major species: |
NA
|
| Keywords: |
| University/Institution: | National Center for Biotechnology Information |
| Address: | National Center for Biotechnology Information (NCBI), National Library of Medicine, Bethesda, MD 20894, USA |
| City: | |
| Province/State: | |
| Country/Region: | United States |
| Contact name (PI/Team): | Zhiyong Lu |
| Contact email (PI/Helpdesk): | zhiyong.lu@nih.gov |
|
PubMed Text Similarity Model and its application to curation efforts in the Conserved Domain Database. [PMID: 31267135]
This study proposes a text similarity model to help biocuration efforts of the Conserved Domain Database (CDD). CDD is a curated resource that catalogs annotated multiple sequence alignment models for ancient domains and full-length proteins. These models allow for fast searching and quick identification of conserved motifs in protein sequences via Reverse PSI-BLAST. In addition, CDD curators prepare summaries detailing the function of these conserved domains and specific protein families, based on published peer-reviewed articles. To facilitate information access for database users, it is desirable to specifically identify the referenced articles that support the assertions of curator-composed sentences. Moreover, CDD curators desire an alert system that scans the newly published literature and proposes related articles of relevance to the existing CDD records. Our approach to address these needs is a text similarity method that automatically maps a curator-written statement to candidate sentences extracted from the list of referenced articles, as well as the articles in the PubMed Central database. To evaluate this proposal, we paired CDD description sentences with the top 10 matching sentences from the literature, which were given to curators for review. Through this exercise, we discovered that we were able to map the articles in the reference list to the CDD description statements with an accuracy of 77%. In the dataset that was reviewed by curators, we were able to successfully provide references for 86% of the curator statements. In addition, we suggested new articles for curator review, which were accepted by curators to be added into the reference list at an acceptance rate of 50%. Through this process, we developed a substantial corpus of similar sentences from biomedical articles on protein sequence, structure and function research, which constitute the CDD text similarity corpus. This corpus contains 5159 sentence pairs judged for their similarity on a scale from 1 (low) to 5 (high) doubly annotated by four CDD curators. Curator-assigned similarity scores have a Pearson correlation coefficient of 0.70 and an inter-annotator agreement of 85%. To date, this is the largest biomedical text similarity resource that has been manually judged, evaluated and made publicly available to the community to foster research and development of text similarity algorithms. |
|
How user intelligence is improving PubMed. [PMID: 30272675]
PubMed is a widely used search engine for biomedical literature. It is developed and maintained by the US National Library of Medicine/National Center for Biotechnology Information and is visited daily by millions of users around the world. For decades, PubMed has used advanced artificial intelligence technologies that extract patterns of collective user activity, such as machine learning and natural language processing, to inform the algorithmic changes that ultimately improve a user's search experience. Although these efforts have led to objective improvements in search quality, the technical underpinnings remain largely invisible and go largely unnoticed by most users. Here we describe how these 'under-the-hood' techniques work within PubMed and report how their effectiveness and usage is assessed in real-world scenarios. In doing so, we hope to increase the transparency of the PubMed system and enable users to make more effective use of the search engine. We also identify open challenges and new opportunities for computational researchers to explore the potential of future improvements. |
|
Best Match: New relevance search for PubMed. [PMID: 30153250]
PubMed is a free search engine for biomedical literature accessed by millions of users from around the world each day. With the rapid growth of biomedical literature-about two articles are added every minute on average-finding and retrieving the most relevant papers for a given query is increasingly challenging. We present Best Match, a new relevance search algorithm for PubMed that leverages the intelligence of our users and cutting-edge machine-learning technology as an alternative to the traditional date sort order. The Best Match algorithm is trained with past user searches with dozens of relevance-ranking signals (factors), the most important being the past usage of an article, publication date, relevance score, and type of article. This new algorithm demonstrates state-of-the-art retrieval performance in benchmarking experiments as well as an improved user experience in real-world testing (over 20% increase in user click-through rate). Since its deployment in June 2017, we have observed a significant increase (60%) in PubMed searches with relevance sort order: it now assists millions of PubMed searches each week. In this work, we hope to increase the awareness and transparency of this new relevance sort option for PubMed users, enabling them to retrieve information more effectively. |
|
LitVar: a semantic search engine for linking genomic variant data in PubMed and PMC. [PMID: 29762787]
The identification and interpretation of genomic variants play a key role in the diagnosis of genetic diseases and related research. These tasks increasingly rely on accessing relevant manually curated information from domain databases (e.g. SwissProt or ClinVar). However, due to the sheer volume of medical literature and high cost of expert curation, curated variant information in existing databases are often incomplete and out-of-date. In addition, the same genetic variant can be mentioned in publications with various names (e.g. 'A146T' versus 'c.436G>A' versus 'rs121913527'). A search in PubMed using only one name usually cannot retrieve all relevant articles for the variant of interest. Hence, to help scientists, healthcare professionals, and database curators find the most up-to-date published variant research, we have developed LitVar for the search and retrieval of standardized variant information. In addition, LitVar uses advanced text mining techniques to compute and extract relationships between variants and other associated entities such as diseases and chemicals/drugs. LitVar is publicly available at https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/LitVar. |
|
PubMed Phrases, an open set of coherent phrases for searching biomedical literature. [PMID: 29893755]
In biomedicine, key concepts are often expressed by multiple words (e.g., 'zinc finger protein'). Previous work has shown treating a sequence of words as a meaningful unit, where applicable, is not only important for human understanding but also beneficial for automatic information seeking. Here we present a collection of PubMed® Phrases that are beneficial for information retrieval and human comprehension. We define these phrases as coherent chunks that are logically connected. To collect the phrase set, we apply the hypergeometric test to detect segments of consecutive terms that are likely to appear together in PubMed. These text segments are then filtered using the BM25 ranking function to ensure that they are beneficial from an information retrieval perspective. Thus, we obtain a set of 705,915 PubMed Phrases. We evaluate the quality of the set by investigating PubMed user click data and manually annotating a sample of 500 randomly selected noun phrases. We also analyze and discuss the usage of these PubMed Phrases in literature search. |
|
PubMed Labs: an experimental system for improving biomedical literature search. [PMID: 30239682]
PubMed is a freely accessible system for searching the biomedical literature, with ~ 2.5 million users worldwide on an average workday. In order to better meet our users' needs in an era of information overload, we have recently developed PubMed Labs (www.pubmed.gov/labs), an experimental system for users to test new search features/tools (e.g. Best Match) and provide feedback, which enables us to make more informed decisions about potential changes to improve the search quality and overall usability of PubMed. In addition, PubMed Labs features a mobile-first and responsive layout that offers better support for accessing PubMed from increasingly popular mobiles and small-screen devices. In this paper, we detail PubMed Labs, its purpose, new features and best practices. We also encourage users to share their experience with us; based on which we are continuously improving PubMed Labs with more advanced features and better user experience. |
|
Towards PubMed 2.0. [PMID: 29083299]
Staff from the National Center for Biotechnology Information in the US describe recent improvements to the PubMed search engine and outline plans for the future, including a new experimental site called PubMed Labs. |
|
Author Name Disambiguation for PubMed. [PMID: 28758138]
Log analysis shows that PubMed users frequently use author names in queries for retrieving scientific literature. However, author name ambiguity may lead to irrelevant retrieval results. To improve the PubMed user experience with author name queries, we designed an author name disambiguation system consisting of similarity estimation and agglomerative clustering. A machine-learning method was employed to score the features for disambiguating a pair of papers with ambiguous names. These features enable the computation of pairwise similarity scores to estimate the probability of a pair of papers belonging to the same author, which drives an agglomerative clustering algorithm regulated by 2 factors: name compatibility and probability level. With transitivity violation correction, high precision author clustering is achieved by focusing on minimizing false-positive pairing. Disambiguation performance is evaluated with manual verification of random samples of pairs from clustering results. When compared with a state-of-the-art system, our evaluation shows that among all the pairs the lumping error rate drops from 10.1% to 2.2% for our system, while the splitting error rises from 1.8% to 7.7%. This results in an overall error rate of 9.9%, compared with 11.9% for the state-of-the-art method. Other evaluations based on gold standard data also show the increase in accuracy of our clustering. We attribute the performance improvement to the machine-learning method driven by a large-scale training set and the clustering algorithm regulated by a name compatibility scheme preferring precision. With integration of the author name disambiguation system into the PubMed search engine, the overall click-through-rate of PubMed users on author name query results improved from 34.9% to 36.9%. |
|
Predicting clicks of PubMed articles. [PMID: 24551386]
Predicting the popularity or access usage of an article has the potential to improve the quality of PubMed searches. We can model the click trend of each article as its access changes over time by mining the PubMed query logs, which contain the previous access history for all articles. In this article, we examine the access patterns produced by PubMed users in two years (July 2009 to July 2011). We explore the time series of accesses for each article in the query logs, model the trends with regression approaches, and subsequently use the models for prediction. We show that the click trends of PubMed articles are best fitted with a log-normal regression model. This model allows the number of accesses an article receives and the time since it first becomes available in PubMed to be related via quadratic and logistic functions, with the model parameters to be estimated via maximum likelihood. Our experiments predicting the number of accesses for an article based on its past usage demonstrate that the mean absolute error and mean absolute percentage error of our model are 4.0% and 8.1% lower than the power-law regression model, respectively. The log-normal distribution is also shown to perform significantly better than a previous prediction method based on a human memory theory in cognitive science. This work warrants further investigation on the utility of such a log-normal regression approach towards improving information access in PubMed. |
|
Developing topic-specific search filters for PubMed with click-through data. [PMID: 23666447]
ObjectivesSearch filters have been developed and demonstrated for better information access to the immense and ever-growing body of publications in the biomedical domain. However, to date the number of filters remains quite limited because the current filter development methods require significant human efforts in manual document review and filter term selection. In this regard, we aim to investigate automatic methods for generating search filters.MethodsWe present an automated method to develop topic-specific filters on the basis of users' search logs in PubMed. Specifically, for a given topic, we first detect its relevant user queries and then include their corresponding clicked articles to serve as the topic-relevant document set accordingly. Next, we statistically identify informative terms that best represent the topic-relevant document set using a background set composed of topic irrelevant articles. Lastly, the selected representative terms are combined with Boolean operators and evaluated on benchmark datasets to derive the final filter with the best performance.ResultsWe applied our method to develop filters for four clinical topics: nephrology, diabetes, pregnancy, and depression. For the nephrology filter, our method obtained performance comparable to the state of the art (sensitivity of 91.3%, specificity of 98.7%, precision of 94.6%, and accuracy of 97.2%). Similarly, high-performing results (over 90% in all measures) were obtained for the other three search filters.ConclusionBased on PubMed click-through data, we successfully developed a high-performance method for generating topic-specific search filters that is significantly more efficient than existing manual methods. All data sets (topic-relevant and irrelevant document sets) used in this study and a demonstration system are publicly available at http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/downloads/CQ_filter/ |
|
PubMed and beyond: a survey of web tools for searching biomedical literature. [PMID: 21245076]
The past decade has witnessed the modern advances of high-throughput technology and rapid growth of research capacity in producing large-scale biological data, both of which were concomitant with an exponential growth of biomedical literature. This wealth of scholarly knowledge is of significant importance for researchers in making scientific discoveries and healthcare professionals in managing health-related matters. However, the acquisition of such information is becoming increasingly difficult due to its large volume and rapid growth. In response, the National Center for Biotechnology Information (NCBI) is continuously making changes to its PubMed Web service for improvement. Meanwhile, different entities have devoted themselves to developing Web tools for helping users quickly and efficiently search and retrieve relevant publications. These practices, together with maturity in the field of text mining, have led to an increase in the number and quality of various Web tools that provide comparable literature search service to PubMed. In this study, we review 28 such tools, highlight their respective innovations, compare them to the PubMed system and one another, and discuss directions for future development. Furthermore, we have built a website dedicated to tracking existing systems and future advances in the field of biomedical literature search. Taken together, our work serves information seekers in choosing tools for their needs and service providers and developers in keeping current in the field. Database URL: http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/search. |