Database Commons
Database Commons

a catalog of worldwide biological databases

Database Profile

comprehensive functional map of the hepatitis C virus genome

General information

URL: http://hangfei.bol.ucla.edu
Full name:
Description: Pairing high-throughput sequencing technologies with high-throughput mutagenesis enables genome-wide investigations of pathogenic organisms. Knowledge of the specific functions of protein domains encoded by the genome of the hepatitis C virus (HCV), a major human pathogen that contributes to liver disease worldwide, remains limited to insight from small-scale studies. To enhance the capabilities of HCV researchers, we have obtained a high-resolution functional map of the entire viral genome by combining transposon-based insertional mutagenesis with next-generation sequencing. We generated a library of 8,398 mutagenized HCV clones, each containing one 15-nucleotide sequence inserted at a unique genomic position. We passaged this library in hepatic cells, recovered virus pools, and simultaneously assayed the abundance of mutant viruses in each pool by next-generation sequencing. To illustrate the validity of the functional profile, we compared the genetic footprints of viral proteins with previously solved protein structures. Moreover, we show the utility of these genetic footprints in the identification of candidate regions for epitope tag insertion. In a second application, we screened the genetic footprints for phenotypes that reflected defects in later steps of the viral life cycle. We confirmed that viruses with insertions in a region of the nonstructural protein NS4B had a defect in infectivity while maintaining genome replication. Overall, our genome-wide HCV mutant library and the genetic footprints obtained by high-resolution profiling represent valuable new resources for the research community that can direct the attention of investigators toward unidentified roles of individual protein domains.
Year founded: 2014
Last update:
Version:
Accessibility:
Accessible
Country/Region: United States

Classification & Tag

Data type:
Data object:
Database category:
Major species:
Keywords:

Contact information

University/Institution: University of California Los Angeles
Address: Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, USA
City:
Province/State:
Country/Region: United States
Contact name (PI/Team): Ren Sun
Contact email (PI/Helpdesk): rsun@mednet.ucla.edu.

Publications

25271282
A comprehensive functional map of the hepatitis C virus genome provides a resource for probing viral proteins. [PMID: 25271282]
Remenyi R, Qi H, Su SY, Chen Z, Wu NC, Arumugaswami V, Truong S, Chu V, Stokelman T, Lo HH, Olson CA, Wu TT, Chen SH, Lin CY, Sun R.

Pairing high-throughput sequencing technologies with high-throughput mutagenesis enables genome-wide investigations of pathogenic organisms. Knowledge of the specific functions of protein domains encoded by the genome of the hepatitis C virus (HCV), a major human pathogen that contributes to liver disease worldwide, remains limited to insight from small-scale studies. To enhance the capabilities of HCV researchers, we have obtained a high-resolution functional map of the entire viral genome by combining transposon-based insertional mutagenesis with next-generation sequencing. We generated a library of 8,398 mutagenized HCV clones, each containing one 15-nucleotide sequence inserted at a unique genomic position. We passaged this library in hepatic cells, recovered virus pools, and simultaneously assayed the abundance of mutant viruses in each pool by next-generation sequencing. To illustrate the validity of the functional profile, we compared the genetic footprints of viral proteins with previously solved protein structures. Moreover, we show the utility of these genetic footprints in the identification of candidate regions for epitope tag insertion. In a second application, we screened the genetic footprints for phenotypes that reflected defects in later steps of the viral life cycle. We confirmed that viruses with insertions in a region of the nonstructural protein NS4B had a defect in infectivity while maintaining genome replication. Overall, our genome-wide HCV mutant library and the genetic footprints obtained by high-resolution profiling represent valuable new resources for the research community that can direct the attention of investigators toward unidentified roles of individual protein domains.
IMPORTANCE: Our insertional mutagenesis library provides a resource that illustrates the effects of relatively small insertions on local protein structure and HCV viability. We have also generated complementary resources, including a website (http://hangfei.bol.ucla.edu) and a panel of epitope-tagged mutant viruses that should enhance the research capabilities of investigators studying HCV. Researchers can now detect epitope-tagged viral proteins by established antibodies, which will allow biochemical studies of HCV proteins for which antibodies are not readily available. Furthermore, researchers can now quickly look up genotype-phenotype relationships and base further mechanistic studies on the residue-by-residue information from the functional profile. More broadly, this approach offers a general strategy for the systematic functional characterization of viruses on the genome scale.

MBio. 2014:5(5) | 14 Citations (from Europe PMC, 2025-12-13)

Ranking

All databases:
4870/6895 (29.384%)
Health and medicine:
1224/1738 (29.632%)
4870
Total Rank
14
Citations
1.273
z-index

Community reviews

Not Rated
Data quality & quantity:
Content organization & presentation
System accessibility & reliability:

Word cloud

Related Databases

Citing
Cited by

Record metadata

Created on: 2018-01-28
Curated by:
Syed Sardar [2018-04-13]
Qi Wang [2018-01-28]