Database Commons
Database Commons

a catalog of worldwide biological databases

Database Profile

FalcataBase

General information

URL: http://bioinformatics.cau.edu.cn/falcata
Full name: Databse for an abiotic stress-responsive transcriptome of Medicago falcata falcata
Description: Transcriptome of an abiotic stress-responsive Medicago falcata using next-generation sequencing data from samples grown under standard, dehydration, high salinity, and cold conditions is presented. This global gene expression analysis provides new insights into the biochemical and molecular mechanisms involved in the acclimation to abiotic stresses.
Year founded: 2015
Last update:
Version: 2.0
Accessibility:
Accessible
Country/Region: China

Classification & Tag

Data type:
Data object:
Database category:
Major species:
Keywords:

Contact information

University/Institution: China Agricultural University
Address: State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
City: Beijing
Province/State: Beijing
Country/Region: China
Contact name (PI/Team): Tao Wang
Contact email (PI/Helpdesk): wangt@cau.edu.cn

Publications

26481731
De novo transcriptome analysis of Medicago falcata reveals novel insights about the mechanisms underlying abiotic stress-responsive pathway. [PMID: 26481731]
Miao Z, Xu W, Li D, Hu X, Liu J, Zhang R, Tong Z, Dong J, Su Z, Zhang L, Sun M, Li W, Du Z, Hu S, Wang T.

BACKGROUND: The entire world is facing a deteriorating environment. Understanding the mechanisms underlying plant responses to external abiotic stresses is important for breeding stress-tolerant crops and herbages. Phytohormones play critical regulatory roles in plants in the response to external and internal cues to regulate growth and development. Medicago falcata is one of the stress-tolerant candidate leguminous species and is able to fix atmospheric nitrogen. This ability allows leguminous plants to grow in nitrogen deficient soils.
METHODS: We performed Illumina sequencing of cDNA prepared from abiotic stress treated M. falcata. Sequencedreads were assembled to provide a transcriptome resource. Transcripts were annotated using BLASTsearches against the NCBI non-redundant database and gene ontology definitions were assigned. Acomparison among the three abiotic stress treated samples was carried out. The expression of transcriptswas confirmed with qRT-PCR.
RESULTS: We present an abiotic stress-responsive M. falcata transcriptome using next-generation sequencing data from samples grown under standard, dehydration, high salinity, and cold conditions. We combined reads from all samples and de novo assembled 98,515 transcripts to build the M. falcata gene index. A comprehensive analysis of the transcriptome revealed abiotic stress-responsive mechanisms underlying the metabolism and core signalling components of major phytohormones. We identified nod factor signalling pathways during early symbiotic nodulation that are modified by abiotic stresses. Additionally, a global comparison of homology between the M. falcata and M. truncatula transcriptomes, along with five other leguminous species, revealed a high level of global sequence conservation within the family.
CONCLUSIONS: M. falcata is shown to be a model candidate for studying abiotic stress-responsive mechanisms in legumes. This global gene expression analysis provides new insights into the biochemical and molecular mechanisms involved in the acclimation to abiotic stresses. Our data provides many gene candidates that might be used for herbage and crop breeding. Additionally, FalcataBase ( http://bioinformatics.cau.edu.cn/falcata/ ) was built for storing these data.

BMC Genomics. 2015:16() | 37 Citations (from Europe PMC, 2025-12-20)

Ranking

All databases:
2921/6895 (57.65%)
Gene genome and annotation:
911/2021 (54.973%)
Expression:
605/1347 (55.16%)
Pathway:
181/451 (60.089%)
Metadata:
300/719 (58.414%)
2921
Total Rank
37
Citations
3.7
z-index

Community reviews

Not Rated
Data quality & quantity:
Content organization & presentation
System accessibility & reliability:

Word cloud

Related Databases

Citing
Cited by

Record metadata

Created on: 2018-01-28
Curated by:
Sidra Younas [2018-04-12]
Meiye Jiang [2018-01-28]