Database Commons
Database Commons

a catalog of worldwide biological databases

Database Profile

Wheat pangenome

General information

URL: http://appliedbioinformatics.com.au/cgi-bin/gb2/gbrowse/WheatPan
Full name: Wheat pangenome
Description: In this study we build an improved reference for Chinese Spring and explore gene diversity across 18 wheat cultivars. We predict a pangenome size of 140 500 ± 102 genes, a core genome of 81 070 ± 1631 genes and an average of 128 656 genes in each cultivar. Functional annotation of the variable gene set suggests that it is enriched for genes that may be associated with important agronomic traits. In addition to variation in gene presence, more than 36 million intervarietal single nucleotide polymorphisms were identified across the pangenome.
Year founded: 2011
Last update:
Version: 2..0
Accessibility:
Accessible
Country/Region: Australia

Classification & Tag

Data type:
DNA
Data object:
Database category:
Major species:
Keywords:

Contact information

University/Institution: University of Queensland
Address: School of Agriculture and Food Sciences, University of Queensland, Brisbane, Australia
City: Brisbane
Province/State:
Country/Region: Australia
Contact name (PI/Team): David Edwards
Contact email (PI/Helpdesk): dave.edwards@uwa.edu.au

Publications

28231383
The pangenome of hexaploid bread wheat. [PMID: 28231383]
Montenegro JD, Golicz AA, Bayer PE, Hurgobin B, Lee H, Chan CK, Visendi P, Lai K, Doležel J, Batley J, Edwards D.

There is an increasing understanding that variation in gene presence-absence plays an important role in the heritability of agronomic traits; however, there have been relatively few studies on variation in gene presence-absence in crop species. Hexaploid wheat is one of the most important food crops in the world and intensive breeding has reduced the genetic diversity of elite cultivars. Major efforts have produced draft genome assemblies for the cultivar Chinese Spring, but it is unknown how well this represents the genome diversity found in current modern elite cultivars. In this study we build an improved reference for Chinese Spring and explore gene diversity across 18 wheat cultivars. We predict a pangenome size of 140 500 ± 102 genes, a core genome of 81 070 ± 1631 genes and an average of 128 656 genes in each cultivar. Functional annotation of the variable gene set suggests that it is enriched for genes that may be associated with important agronomic traits. In addition to variation in gene presence, more than 36 million intervarietal single nucleotide polymorphisms were identified across the pangenome. This study of the wheat pangenome provides insight into genome diversity in elite wheat as a basis for genomics-based improvement of this important crop. A wheat pangenome, GBrowse, is available at http://appliedbioinformatics.com.au/cgi-bin/gb2/gbrowse/WheatPan/, and data are available to download from http://wheatgenome.info/wheat_genome_databases.php.

Plant J. 2017:90(5) | 246 Citations (from Europe PMC, 2025-12-13)
23346876
Dispersion and domestication shaped the genome of bread wheat. [PMID: 23346876]
Berkman PJ, Visendi P, Lee HC, Stiller J, Manoli S, Lorenc MT, Lai K, Batley J, Fleury D, Simková H, Kubaláková M, Weining S, Doležel J, Edwards D.

Despite the international significance of wheat, its large and complex genome hinders genome sequencing efforts. To assess the impact of selection on this genome, we have assembled genomic regions representing genes for chromosomes 7A, 7B and 7D. We demonstrate that the dispersion of wheat to new environments has shaped the modern wheat genome. Most genes are conserved between the three homoeologous chromosomes. We found differential gene loss that supports current theories on the evolution of wheat, with greater loss observed in the A and B genomes compared with the D. Analysis of intervarietal polymorphisms identified fewer polymorphisms in the D genome, supporting the hypothesis of early gene flow between the tetraploid and hexaploid. The enrichment for genes on the D genome that confer environmental adaptation may be associated with dispersion following wheat domestication. Our results demonstrate the value of applying next-generation sequencing technologies to assemble gene-rich regions of complex genomes and investigate polyploid genome evolution. We anticipate the genome-wide application of this reduced-complexity syntenic assembly approach will accelerate crop improvement efforts not only in wheat, but also in other polyploid crops of significance.

Plant Biotechnol J. 2013:11(5) | 59 Citations (from Europe PMC, 2025-12-13)
22001910
Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation. [PMID: 22001910]
Berkman PJ, Skarshewski A, Manoli S, Lorenc MT, Stiller J, Smits L, Lai K, Campbell E, Kubaláková M, Simková H, Batley J, Doležel J, Hernandez P, Edwards D.

Complex Triticeae genomes pose a challenge to genome sequencing efforts due to their size and repetitive nature. Genome sequencing can reveal details of conservation and rearrangements between related genomes. We have applied Illumina second generation sequencing technology to sequence and assemble the low copy and unique regions of Triticum aestivum chromosome arm 7BS, followed by the construction of a syntenic build based on gene order in Brachypodium. We have delimited the position of a previously reported translocation between 7BS and 4AL with a resolution of one or a few genes and report approximately 13% genes from 7BS having been translocated to 4AL. An additional 13 genes are found on 7BS which appear to have originated from 4AL. The gene content of the 7DS and 7BS syntenic builds indicate a total of ~77,000 genes in wheat. Within wheat syntenic regions, 7BS and 7DS share 740 genes and a common gene conservation rate of ~39% of the genes from the corresponding regions in Brachypodium, as well as a common rate of colinearity with Brachypodium of ~60%. Comparison of wheat homoeologues revealed ~84% of genes previously identified in 7DS have a homoeologue on 7BS or 4AL. The conservation rates we have identified among wheat homoeologues and with Brachypodium provide a benchmark of homoeologous gene conservation levels for future comparative genomic analysis. The syntenic build of 7BS is publicly available at http://www.wheatgenome.info.

Theor Appl Genet. 2012:124(3) | 56 Citations (from Europe PMC, 2025-12-13)
21356002
Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS. [PMID: 21356002]
Berkman PJ, Skarshewski A, Lorenc MT, Lai K, Duran C, Ling EY, Stiller J, Smits L, Imelfort M, Manoli S, McKenzie M, Kubaláková M, Šimková H, Batley J, Fleury D, Doležel J, Edwards D.

The genome of bread wheat (Triticum aestivum) is predicted to be greater than 16 Gbp in size and consist predominantly of repetitive elements, making the sequencing and assembly of this genome a major challenge. We have reduced genome sequence complexity by isolating chromosome arm 7DS and applied second-generation technology and appropriate algorithmic analysis to sequence and assemble low copy and genic regions of this chromosome arm. The assembly represents approximately 40% of the chromosome arm and all known 7DS genes. Comparison of the 7DS assembly with the sequenced genomes of rice (Oryza sativa) and Brachypodium distachyon identified large regions of conservation. The syntenic relationship between wheat, B. distachyon and O. sativa, along with available genetic mapping data, has been used to produce an annotated draft 7DS syntenic build, which is publicly available at http://www.wheatgenome.info. Our results suggest that the sequencing of isolated chromosome arms can provide valuable information of the gene content of wheat and is a step towards whole-genome sequencing and variation discovery in this important crop.

Plant Biotechnol J. 2011:9(7) | 66 Citations (from Europe PMC, 2025-12-13)

Ranking

All databases:
544/6895 (92.125%)
Gene genome and annotation:
188/2021 (90.747%)
544
Total Rank
408
Citations
29.143
z-index

Community reviews

Not Rated
Data quality & quantity:
Content organization & presentation
System accessibility & reliability:

Word cloud

Related Databases

Citing
Cited by

Record metadata

Created on: 2018-01-28
Curated by:
Lina Ma [2018-04-19]
Aniza Aziz [2018-04-18]