| URL: | http://proteomics.ysu.edu/altsplice |
| Full name: | Plant Alternative Splicing Database |
| Description: | Protein functional diversity at the post-transcriptional level is regulated through spliceosome mediated pre-mRNA alternative splicing (AS) events and that has been widely demonstrated to be a key player in regulating the functional diversity in plants. Identification and analysis of AS genes in cereal crop plants are critical for crop improvement and understanding regulatory mechanisms. |
| Year founded: | 2015 |
| Last update: | |
| Version: | |
| Accessibility: |
Accessible
|
| Country/Region: | United States |
| Data type: | |
| Data object: | |
| Database category: | |
| Major species: | |
| Keywords: |
| University/Institution: | Youngstown State University |
| Address: | Department of Biological Sciences, Youngstown State University, Youngstown, USA |
| City: | |
| Province/State: | |
| Country/Region: | United States |
| Contact name (PI/Team): | Xiang Jia Min |
| Contact email (PI/Helpdesk): | xmin@ysu.edu |
|
Expanding Alternative Splicing Identification by Integrating Multiple Sources of Transcription Data in Tomato. [PMID: 31191588]
Tomato () is an important vegetable and fruit crop. Its genome was completely sequenced and there are also a large amount of available expressed sequence tags (ESTs) and short reads generated by RNA sequencing (RNA-seq) technologies. Mapping transcripts including mRNA sequences, ESTs, and RNA-seq reads to the genome allows identifying pre-mRNA alternative splicing (AS), a post-transcriptional process generating two or more RNA isoforms from one pre-mRNA transcript. We comprehensively analyzed the AS landscape in tomato by integrating genome mapping information of all available mRNA and ESTs with mapping information of RNA-seq reads which were collected from 27 published projects. A total of 369,911 AS events were identified from 34,419 genomic loci involving 161,913 transcripts. Within the basic AS events, intron retention is the prevalent type (18.9%), followed by alternative acceptor site (12.9%) and alternative donor site (7.3%), with exon skipping as the least type (6.0%). Complex AS types having two or more basic event accounted for 54.9% of total AS events. Within 35,768 annotated protein-coding gene models, 23,233 gene models were found having pre-mRNAs generating AS isoform transcripts. Thus the estimated AS rate was 65.0% in tomato. The list of identified AS genes with their corresponding transcript isoforms serves as a catalog for further detailed examination of gene functions in tomato biology. The post-transcriptional information is also expected to be useful in improving the predicted gene models in tomato. The sequence and annotation information can be accessed at plant alternative splicing database (http://proteomics.ysu.edu/altsplice). |
|
Genome-wide cataloging and analysis of alternatively spliced genes in cereal crops. [PMID: 26391769]
BACKGROUND: Protein functional diversity at the post-transcriptional level is regulated through spliceosome mediated pre-mRNA alternative splicing (AS) events and that has been widely demonstrated to be a key player in regulating the functional diversity in plants. Identification and analysis of AS genes in cereal crop plants are critical for crop improvement and understanding regulatory mechanisms. |