Database Commons
Database Commons

a catalog of worldwide biological databases

Database Profile

CDG

General information

URL: http://lab.rockefeller.edu/casanova/CDG
Full name: Detecting Biologically Closest Disease-Causing Genes
Description: o facilitate the discovery of novel gene-disease associations, we determined the putative biologically closest known genes and their associated diseases for 13,005 human genes not currently reported to be disease-associated. We used these data to construct the closest disease-causing genes (CDG) server, which can be used to infer the closest genes with an associated disease for a user-defined list of genes or diseases. We demonstrate the utility of the CDG server in five immunodeficiency patient exomes across different diseases and modes of inheritance, where CDG dramatically reduced the number of candidate genes to be evaluated
Year founded: 2018
Last update:
Version:
Accessibility:
Accessible
Country/Region: United States

Classification & Tag

Data type:
Data object:
Database category:
Major species:
Keywords:

Contact information

University/Institution: Rockefeller University
Address: St. Giles Laboratory of Human Genetics of Infectious Diseases (Rockefeller Branch), The Rockefeller University, New York, NY, United States.
City:
Province/State:
Country/Region: United States
Contact name (PI/Team): David Requena
Contact email (PI/Helpdesk): drequena@rockefeller.edu

Publications

29997612
CDG: An Online Server for Detecting Biologically Closest Disease-Causing Genes and its Application to Primary Immunodeficiency. [PMID: 29997612]
David Requena, Patrick Maffucci, Benedetta Bigio, Lei Shang, Avinash Abhyankar, Bertrand Boisson, Peter D Stenson, David N Cooper, Charlotte Cunningham-Rundles, Jean-Laurent Casanova, Laurent Abel, Yuval Itan

High-throughput genomic technologies yield about 20,000 variants in the protein-coding exome of each individual. A commonly used approach to select candidate disease-causing variants is to test whether the associated gene has been previously reported to be disease-causing. In the absence of known disease-causing genes, it can be challenging to associate candidate genes with specific genetic diseases. To facilitate the discovery of novel gene-disease associations, we determined the putative biologically closest known genes and their associated diseases for 13,005 human genes not currently reported to be disease-associated. We used these data to construct the closest disease-causing genes (CDG) server, which can be used to infer the closest genes with an associated disease for a user-defined list of genes or diseases. We demonstrate the utility of the CDG server in five immunodeficiency patient exomes across different diseases and modes of inheritance, where CDG dramatically reduced the number of candidate genes to be evaluated. This resource will be a considerable asset for ascertaining the potential relevance of genetic variants found in patient exomes to specific diseases of interest. The CDG database and online server are freely available to non-commercial users at: http://lab.rockefeller.edu/casanova/CDG.

Front Immunol. 2018:9() | 4 Citations (from Europe PMC, 2025-12-13)

Ranking

All databases:
5982/6895 (13.256%)
Genotype phenotype and variation:
874/1005 (13.134%)
5982
Total Rank
4
Citations
0.571
z-index

Community reviews

Not Rated
Data quality & quantity:
Content organization & presentation
System accessibility & reliability:

Word cloud

Related Databases

Citing
Cited by

Record metadata

Created on: 2019-10-24
Curated by:
Lin Liu [2022-08-22]
irfan Hussain [2019-11-15]
Shoaib Saleem [2019-10-24]