| URL: | https://data.oncomx.org/covid19 |
| Full name: | |
| Description: | In the COVID-19 Biomarkers Database, COVID-19 biomarkers are curated from publications by extending and re-purposing the OncoMX cancer biomarker data model. The resulting COVID-19 biomarkers are also mapped to cancer and diabetes biomarkers and hence can assist researchers working on the development of diagnostics or drugs by providing a detailed view of the biomarker in other diseases. |
| Year founded: | 2020 |
| Last update: | |
| Version: | |
| Accessibility: |
Accessible
|
| Country/Region: | United States |
| Data type: | |
| Data object: | |
| Database category: | |
| Major species: | |
| Keywords: |
| University/Institution: | George Washington University |
| Address: | Washington, DC 20037 |
| City: | Washington |
| Province/State: | |
| Country/Region: | United States |
| Contact name (PI/Team): | Raja Mazumder |
| Contact email (PI/Helpdesk): | mazumder@gwu.edu |
|
COVID-19 biomarkers and their overlap with comorbidities in a disease biomarker data model. [PMID: 34015823]
In response to the COVID-19 outbreak, scientists and medical researchers are capturing a wide range of host responses, symptoms and lingering postrecovery problems within the human population. These variable clinical manifestations suggest differences in influential factors, such as innate and adaptive host immunity, existing or underlying health conditions, comorbidities, genetics and other factors-compounding the complexity of COVID-19 pathobiology and potential biomarkers associated with the disease, as they become available. The heterogeneous data pose challenges for efficient extrapolation of information into clinical applications. We have curated 145 COVID-19 biomarkers by developing a novel cross-cutting disease biomarker data model that allows integration and evaluation of biomarkers in patients with comorbidities. Most biomarkers are related to the immune (SAA, TNF-∝ and IP-10) or coagulation (D-dimer, antithrombin and VWF) cascades, suggesting complex vascular pathobiology of the disease. Furthermore, we observe commonality with established cancer biomarkers (ACE2, IL-6, IL-4 and IL-2) as well as biomarkers for metabolic syndrome and diabetes (CRP, NLR and LDL). We explore these trends as we put forth a COVID-19 biomarker resource (https://data.oncomx.org/covid19) that will help researchers and diagnosticians alike. |
|
COVID-19 Biomarkers in research: Extension of the OncoMX cancer biomarker data model to capture biomarker data from other diseases. [PMID: 32935101]
Scientists, medical researchers, and health care workers have mobilized worldwide in response to the outbreak of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; SCoV2). Preliminary data have captured a wide range of host responses, symptoms, and lingering problems post-recovery within the human population. These variable clinical manifestations suggest differences in influential factors, such as innate and adaptive host immunity, existing or underlying health conditions, co-morbidities, genetics, and other factors. As COVID-19-related data continue to accumulate from disparate groups, the heterogeneous nature of these datasets poses challenges for efficient extrapolation of meaningful observations, hindering translation of information into clinical applications. Attempts to utilize, analyze, or combine biomarker datasets from multiple sources have shown to be inefficient and complicated, without a unifying resource. As such, there is an urgent need within the research community for the rapid development of an integrated and harmonized COVID-19 Biomarker Knowledgebase. By leveraging data collection and integration methods, backed by a robust data model developed to capture cancer biomarker data we have rapidly crowdsourced the collection and harmonization of COVID-19 biomarkers. Our resource currently has 138 unique biomarkers. We found multiple instances of the same biomarker substance being suggested as multiple biomarker types during our extensive cross-validation and manual curation. As a result, our Knowledgebase currently has 265 biomarker type combinations. Every biomarker entry is made comprehensive by bringing in together ancillary data from multiple sources such as biomarker accessions (canonical UniProtKB accession, PubChem Compound ID, Cell Ontology ID, Protein Ontology ID, NCI Thesaurus Code, and Disease Ontology ID), BEST biomarker category, and specimen type (Uberon Anatomy Ontology) unified with ontology standards. Our preliminary observations show distinct trends in the collated biomarkers. Most biomarkers are related to the immune system (SAA,TNF-∝, and IP-10) or coagulopathies (D-dimer, antithrombin, and VWF) and a few have already been established as cancer biomarkers (ACE2, IL-6, IL-4 and IL-2). These trends align with proposed hypotheses of clinical manifestations compounding the complexity of COVID-19 pathobiology. We explore these trends as we put forth a COVID-19 biomarker resource that will help researchers and diagnosticians alike. All biomarker data are freely available from https://data.oncomx.org/covid19 . |
|
OncoMX: A Knowledgebase for Exploring Cancer Biomarkers in the Context of Related Cancer and Healthy Data. [PMID: 32142370]
PURPOSE:The purpose of OncoMX1 knowledgebase development was to integrate cancer biomarker and relevant data types into a meta-portal, enabling the research of cancer biomarkers side by side with other pertinent multidimensional data types. METHODS:Cancer mutation, cancer differential expression, cancer expression specificity, healthy gene expression from human and mouse, literature mining for cancer mutation and cancer expression, and biomarker data were integrated, unified by relevant biomedical ontologies, and subjected to rule-based automated quality control before ingestion into the database. RESULTS:OncoMX provides integrated data encompassing more than 1,000 unique biomarker entries (939 from the Early Detection Research Network [EDRN] and 96 from the US Food and Drug Administration) mapped to 20,576 genes that have either mutation or differential expression in cancer. Sentences reporting mutation or differential expression in cancer were extracted from more than 40,000 publications, and healthy gene expression data with samples mapped to organs are available for both human genes and their mouse orthologs. CONCLUSION:OncoMX has prioritized user feedback as a means of guiding development priorities. By mapping to and integrating data from several cancer genomics resources, it is hoped that OncoMX will foster a dynamic engagement between bioinformaticians and cancer biomarker researchers. This engagement should culminate in a community resource that substantially improves the ability and efficiency of exploring cancer biomarker data and related multidimensional data. |