| URL: | http://www.pickle.gr |
| Full name: | Protein Interaction knowledgebase |
| Description: | PICKLE is a protein-protein interaction meta-database for human and mouse. |
| Year founded: | 2013 |
| Last update: | 2021-10-01 |
| Version: | 3.3 |
| Accessibility: |
Accessible
|
| Country/Region: | Greece |
| Data type: | |
| Data object: | |
| Database category: | |
| Major species: | |
| Keywords: |
| University/Institution: | University of Patras |
| Address: | Department of General Biology, School of Medicine, University of Patras, Rio, Patras |
| City: | Patras |
| Province/State: | |
| Country/Region: | Greece |
| Contact name (PI/Team): | Nicholas K Moschonas |
| Contact email (PI/Helpdesk): | n_moschonas@med.upatras.gr |
|
How Far Are We from the Completion of the Human Protein Interactome Reconstruction? [PMID: 35053288]
After more than fifteen years from the first high-throughput experiments for human protein-protein interaction (PPI) detection, we are still wondering how close the completion of the genome-scale human PPI network reconstruction is, what needs to be further explored and whether the biological insights gained from the holistic investigation of the current network are valid and useful. The unique structure of PICKLE, a meta-database of the human experimentally determined direct PPI network developed by our group, presently covering ~80% of the UniProtKB/Swiss-Prot reviewed human complete proteome, enables the evaluation of the interactome expansion by comparing the successive PICKLE releases since 2013. We observe a gradual overall increase of 39%, 182%, and 67% in protein nodes, PPIs, and supporting references, respectively. Our results indicate that, in recent years, (a) the PPI addition rate has decreased, (b) the new PPIs are largely determined by high-throughput experiments and mainly concern existing protein nodes and (c), as we had predicted earlier, most of the newly added protein nodes have a low degree. These observations, combined with a largely overlapping k-core between PICKLE releases and a network density increase, imply that an almost complete picture of a structurally defined network has been reached. The comparative unsupervised application of two clustering algorithms indicated that exploring the full interactome topology can reveal the protein neighborhoods involved in closely related biological processes as transcriptional regulation, cell signaling and multiprotein complexes such as the connexon complex associated with cancers. A well-reconstructed human protein interactome is a powerful tool in network biology and medicine research forming the basis for multi-omic and dynamic analyses. |
|
PICKLE 3.0: Enriching the human Meta-database with the mouse protein interactome extended via mouse-human orthology. [PMID: 33367505]
SUMMARY: The PICKLE 3.0 upgrade refers to the enrichment of this human protein-protein interaction (PPI) meta-database with the mouse protein interactome. Experimental PPI data between mouse genetic entities are rather limited; however, they are substantially complemented by PPIs between mouse and human genetic entities. The relational scheme of PICKLE 3.0 has been amended to exploit the Mouse Genome Informatics (MGI) mouse-human ortholog gene pair collection, enabling (i) the extension through orthology of the mouse interactome with potentially valid PPIs between mouse entities based on the experimental PPIs between mouse and human entities, and (ii) the comparison between mouse and human PPI networks. Interestingly, 43.5% of the experimental mouse PPIs lacks a corresponding by orthology PPI in human, an inconsistency in need of further investigation. Overall, as primary mouse PPI datasets show a considerably limited overlap, PICKLE 3.0 provides a unique comprehensive representation of the mouse protein interactome. |
|
PICKLE 2.0: A human protein-protein interaction meta-database employing data integration via genetic information ontology. [PMID: 29023571]
It has been acknowledged that source databases recording experimentally supported human protein-protein interactions (PPIs) exhibit limited overlap. Thus, the reconstruction of a comprehensive PPI network requires appropriate integration of multiple heterogeneous primary datasets, presenting the PPIs at various genetic reference levels. Existing PPI meta-databases perform integration via normalization; namely, PPIs are merged after converted to a certain target level. Hence, the node set of the integrated network depends each time on the number and type of the combined datasets. Moreover, the irreversible a priori normalization process hinders the identification of normalization artifacts in the integrated network, which originate from the nonlinearity characterizing the genetic information flow. PICKLE (Protein InteraCtion KnowLedgebasE) 2.0 implements a new architecture for this recently introduced human PPI meta-database. Its main novel feature over the existing meta-databases is its approach to primary PPI dataset integration via genetic information ontology. Building upon the PICKLE principles of using the reviewed human complete proteome (RHCP) of UniProtKB/Swiss-Prot as the reference protein interactor set, and filtering out protein interactions with low probability of being direct based on the available evidence, PICKLE 2.0 first assembles the RHCP genetic information ontology network by connecting the corresponding genes, nucleotide sequences (mRNAs) and proteins (UniProt entries) and then integrates PPI datasets by superimposing them on the ontology network without any a priori transformations. Importantly, this process allows the resulting heterogeneous integrated network to be reversibly normalized to any level of genetic reference without loss of the original information, the latter being used for identification of normalization biases, and enables the appraisal of potential false positive interactions through PPI source database cross-checking. The PICKLE web-based interface (www.pickle.gr) allows for the simultaneous query of multiple entities and provides integrated human PPI networks at either the protein (UniProt) or the gene level, at three PPI filtering modes. |
|
Reconstruction of the experimentally supported human protein interactome: what can we learn? [PMID: 24088582]
BackgroundUnderstanding the topology and dynamics of the human protein-protein interaction (PPI) network will significantly contribute to biomedical research, therefore its systematic reconstruction is required. Several meta-databases integrate source PPI datasets, but the protein node sets of their networks vary depending on the PPI data combined. Due to this inherent heterogeneity, the way in which the human PPI network expands via multiple dataset integration has not been comprehensively analyzed. We aim at assembling the human interactome in a global structured way and exploring it to gain insights of biological relevance.ResultsFirst, we defined the UniProtKB manually reviewed human "complete" proteome as the reference protein-node set and then we mined five major source PPI datasets for direct PPIs exclusively between the reference proteins. We updated the protein and publication identifiers and normalized all PPIs to the UniProt identifier level. The reconstructed interactome covers approximately 60% of the human proteome and has a scale-free structure. No apparent differentiating gene functional classification characteristics were identified for the unrepresented proteins. The source dataset integration augments the network mainly in PPIs. Polyubiquitin emerged as the highest-degree node, but the inclusion of most of its identified PPIs may be reconsidered. The high number (>300) of connections of the subsequent fifteen proteins correlates well with their essential biological role. According to the power-law network structure, the unrepresented proteins should mainly have up to four connections with equally poorly-connected interactors.ConclusionsReconstructing the human interactome based on the a priori definition of the protein nodes enabled us to identify the currently included part of the human "complete" proteome, and discuss the role of the proteins within the network topology with respect to their function. As the network expansion has to comply with the scale-free theory, we suggest that the core of the human interactome has essentially emerged. Thus, it could be employed in systems biology and biomedical research, despite the considerable number of currently unrepresented proteins. The latter are probably involved in specialized physiological conditions, justifying the scarcity of related PPI information, and their identification can assist in designing relevant functional experiments and targeted text mining algorithms. |