Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells.

Kyu-Tae Kim, Hye Won Lee, Hae-Ock Lee, Sang Cheol Kim, Yun Jee Seo, Woosung Chung, Hye Hyeon Eum, Do-Hyun Nam, Junhyong Kim, Kyeung Min Joo, Woong-Yang Park
Author Information
  1. Kyu-Tae Kim: Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea. kimqtae@snu.ac.kr.
  2. Hye Won Lee: Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, South Korea. nsproper@naver.com.
  3. Hae-Ock Lee: Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea. haeock.lee@samsung.com.
  4. Sang Cheol Kim: Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea. sang.cheol.kim@samsung.com.
  5. Yun Jee Seo: Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, South Korea. yunjee.seo@gmail.com.
  6. Woosung Chung: Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea. cws1021@skku.edu.
  7. Hye Hyeon Eum: Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea. smflsdkdl@snu.ac.kr.
  8. Do-Hyun Nam: Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, South Korea. nsnam@skku.edu.
  9. Junhyong Kim: Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA. junhyong@sas.upenn.edu.
  10. Kyeung Min Joo: Institute for Refractory Cancer Research, Samsung Medical Center, Seoul, South Korea. kmjoo@skku.edu.
  11. Woong-Yang Park: Samsung Genome Institute, Samsung Medical Center, Seoul, South Korea. woongyang.park@samsung.com.

Abstract

BACKGROUND: Intra-tumoral genetic and functional heterogeneity correlates with cancer clinical prognoses. However, the mechanisms by which intra-tumoral heterogeneity impacts therapeutic outcome remain poorly understood. RNA sequencing (RNA-seq) of single tumor cells can provide comprehensive information about gene expression and single-nucleotide variations in individual tumor cells, which may allow for the translation of heterogeneous tumor cell functional responses into customized anti-cancer treatments.
RESULTS: We isolated 34 patient-derived xenograft (PDX) tumor cells from a lung adenocarcinoma patient tumor xenograft. Individual tumor cells were subjected to single cell RNA-seq for gene expression profiling and expressed mutation profiling. Fifty tumor-specific single-nucleotide variations, including KRAS(G12D), were observed to be heterogeneous in individual PDX cells. Semi-supervised clustering, based on KRAS(G12D) mutant expression and a risk score representing expression of 69 lung adenocarcinoma-prognostic genes, classified PDX cells into four groups. PDX cells that survived in vitro anti-cancer drug treatment displayed transcriptome signatures consistent with the group characterized by KRAS(G12D) and low risk score.
CONCLUSIONS: Single-cell RNA-seq on viable PDX cells identified a candidate tumor cell subgroup associated with anti-cancer drug resistance. Thus, single-cell RNA-seq is a powerful approach for identifying unique tumor cell-specific gene expression profiles which could facilitate the development of optimized clinical anti-cancer strategies.

Associated Data

GEO | GSE69405

References

  1. Bioinformatics. 2007 Dec 1;23(23):3251-3 [PMID: 17644558]
  2. Nature. 2015 Feb 19;518(7539):422-6 [PMID: 25470049]
  3. PLoS Biol. 2014 Jul;12(7):e1001906 [PMID: 25003521]
  4. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  5. Cell. 2012 Sep 14;150(6):1107-20 [PMID: 22980975]
  6. Cancer J. 2013 May-Jun;19(3):200-7 [PMID: 23708066]
  7. J Clin Oncol. 2007 Dec 10;25(35):5562-9 [PMID: 18065728]
  8. BMC Bioinformatics. 2013;14:7 [PMID: 23323831]
  9. Clin Cancer Res. 2015 Mar 1;21(5):1172-82 [PMID: 25549722]
  10. Blood. 2012 Aug 2;120(5):1067-76 [PMID: 22498740]
  11. Bioinformatics. 2014 Apr 15;30(8):1056-1063 [PMID: 24389661]
  12. Bioinformatics. 2011 Oct 1;27(19):2648-54 [PMID: 21828086]
  13. Anal Chem. 2014 Jan 7;86(1):535-42 [PMID: 24199994]
  14. Clin Cancer Res. 2008 Nov 15;14(22):7397-404 [PMID: 19010856]
  15. Nat Commun. 2013;4:2612 [PMID: 24113773]
  16. Nature. 2014 Aug 14;512(7513):155-60 [PMID: 25079324]
  17. Nature. 2011 Apr 7;472(7341):90-4 [PMID: 21399628]
  18. Semin Roentgenol. 2005 Apr;40(2):90-7 [PMID: 15898407]
  19. Nature. 2010 Apr 15;464(7291):999-1005 [PMID: 20393555]
  20. Genome Res. 2012 Mar;22(3):568-76 [PMID: 22300766]
  21. Science. 2014 Jun 20;344(6190):1396-401 [PMID: 24925914]
  22. Nucleic Acids Res. 2001 Jan 1;29(1):308-11 [PMID: 11125122]
  23. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  24. Nature. 2009 Nov 5;462(7269):108-12 [PMID: 19847166]
  25. Nat Biotechnol. 2012 Aug;30(8):777-82 [PMID: 22820318]
  26. Genome Med. 2013 Oct 11;5(10):91 [PMID: 24112718]
  27. Ann Surg Oncol. 2012 Jul;19 Suppl 3:S347-54 [PMID: 21607772]
  28. Nat Med. 2002 Aug;8(8):816-24 [PMID: 12118244]
  29. PLoS Med. 2005 Nov;2(11):e313 [PMID: 16187797]
  30. Nature. 2014 Jul 10;511(7508):241-5 [PMID: 24896186]
  31. N Engl J Med. 2012 Mar 8;366(10):883-92 [PMID: 22397650]
  32. Nature. 2013 Sep 19;501(7467):338-45 [PMID: 24048066]
  33. J Pathol. 2013 Sep;231(1):21-34 [PMID: 23780408]
  34. Genome Res. 2012 Sep;22(9):1760-74 [PMID: 22955987]
  35. Nat Med. 2008 Dec;14(12):1351-6 [PMID: 19029981]
  36. J Thorac Oncol. 2008 Aug;3(8):819-31 [PMID: 18670299]
  37. Cancer Cell. 2008 Jan;13(1):48-57 [PMID: 18167339]
  38. BMC Bioinformatics. 2011;12:323 [PMID: 21816040]
  39. Genome Biol. 2014;15(8):452 [PMID: 25222669]
  40. Biostatistics. 2007 Jan;8(1):118-27 [PMID: 16632515]
  41. Lancet Oncol. 2013 Jan;14(1):38-47 [PMID: 23200175]
  42. Lab Invest. 2008 Aug;88(8):808-15 [PMID: 18560366]
  43. Nat Genet. 2011 May;43(5):491-8 [PMID: 21478889]
  44. Nature. 2008 Oct 23;455(7216):1069-75 [PMID: 18948947]
  45. Front Oncol. 2014 Jul 23;4:190 [PMID: 25101246]
  46. Nat Methods. 2014 Jan;11(1):41-6 [PMID: 24141493]
  47. Cell. 2012 Mar 2;148(5):873-85 [PMID: 22385957]
  48. Cell. 2012 Mar 2;148(5):886-95 [PMID: 22385958]
  49. Nature. 2014 Jul 31;511(7511):543-50 [PMID: 25079552]
  50. Cancer. 2013 Aug 15;119(16):3034-42 [PMID: 23696076]
  51. Nucleic Acids Res. 2010 Jan;38(Database issue):D652-7 [PMID: 19906727]
  52. Cancer Cell. 2014 Mar 17;25(3):379-92 [PMID: 24613412]
  53. Nat Genet. 2005 Jan;37(1):48-55 [PMID: 15608639]
  54. Science. 2013 Feb 1;339(6119):543-8 [PMID: 23239622]
  55. Cell Rep. 2013 Jan 31;3(1):260-73 [PMID: 23333277]
  56. J Thorac Oncol. 2013 Jul;8(7):823-59 [PMID: 23552377]
  57. Biochem Biophys Res Commun. 2006 Feb 17;340(3):967-75 [PMID: 16410077]
  58. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  59. Genome Res. 2010 Jan;20(1):68-80 [PMID: 19903760]
  60. N Engl J Med. 2013 Mar 28;368(13):1199-209 [PMID: 23484797]
  61. Clin Cancer Res. 2008 Aug 1;14(15):4877-82 [PMID: 18676761]
  62. Cell. 2005 Aug 12;122(3):421-34 [PMID: 16096061]
  63. N Engl J Med. 2007 Jan 4;356(1):11-20 [PMID: 17202451]
  64. Am J Hum Genet. 2013 Oct 3;93(4):641-51 [PMID: 24075185]
  65. Nat Biotechnol. 2013 Mar;31(3):213-9 [PMID: 23396013]

MeSH Term

Adenocarcinoma
Adenocarcinoma of Lung
Animals
Antineoplastic Agents
Drug Resistance, Neoplasm
Gene Expression Profiling
Genetic Heterogeneity
Humans
Lung Neoplasms
Male
Mice
Middle Aged
Phenotype
RNA, Messenger
Sequence Analysis, RNA
Single-Cell Analysis
Tumor Cells, Cultured
Xenograft Model Antitumor Assays

Chemicals

Antineoplastic Agents
RNA, Messenger