Single-cell RNA sequencing reveals the impact of chromosomal instability on glioblastoma cancer stem cells.

Yanding Zhao, Robert Carter, Sivaraman Natarajan, Frederick S Varn, Duane A Compton, Charles Gawad, Chao Cheng, Kristina M Godek
Author Information
  1. Yanding Zhao: Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
  2. Robert Carter: Departments of Oncology and Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
  3. Sivaraman Natarajan: Departments of Oncology and Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
  4. Frederick S Varn: Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
  5. Duane A Compton: Department of Biochemistry and Cell Biology, HB7200, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.
  6. Charles Gawad: Departments of Oncology and Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
  7. Chao Cheng: Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA. chao.cheng@bcm.edu.
  8. Kristina M Godek: Department of Biochemistry and Cell Biology, HB7200, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA. Kristina.M.Godek@dartmouth.edu. ORCID

Abstract

BACKGROUND: Intra-tumor heterogeneity stems from genetic, epigenetic, functional, and environmental differences among tumor cells. A major source of genetic heterogeneity comes from DNA sequence differences and/or whole chromosome and focal copy number variations (CNVs). Whole chromosome CNVs are caused by chromosomal instability (CIN) that is defined by a persistently high rate of chromosome mis-segregation. Accordingly, CIN causes constantly changing karyotypes that result in extensive cell-to-cell genetic heterogeneity. How the genetic heterogeneity caused by CIN influences gene expression in individual cells remains unknown.
METHODS: We performed single-cell RNA sequencing on a chromosomally unstable glioblastoma cancer stem cell (CSC) line and a control normal, diploid neural stem cell (NSC) line to investigate the impact of CNV due to CIN on gene expression. From the gene expression data, we computationally inferred large-scale CNVs in single cells. Also, we performed copy number adjusted differential gene expression analysis between NSCs and glioblastoma CSCs to identify copy number dependent and independent differentially expressed genes.
RESULTS: Here, we demonstrate that gene expression across large genomic regions scales proportionally to whole chromosome copy number in chromosomally unstable CSCs. Also, we show that the differential expression of most genes between normal NSCs and glioblastoma CSCs is largely accounted for by copy number alterations. However, we identify 269 genes whose differential expression in glioblastoma CSCs relative to normal NSCs is independent of copy number. Moreover, a gene signature derived from the subset of genes that are differential expressed independent of copy number in glioblastoma CSCs correlates with tumor grade and is prognostic for patient survival.
CONCLUSIONS: These results demonstrate that CIN is directly responsible for gene expression changes and contributes to both genetic and transcriptional heterogeneity among glioblastoma CSCs. These results also demonstrate that the expression of some genes is buffered against changes in copy number, thus preserving some consistency in gene expression levels from cell-to-cell despite the continuous change in karyotype driven by CIN. Importantly, a gene signature derived from the subset of genes whose expression is buffered against copy number alterations correlates with tumor grade and is prognostic for patient survival that could facilitate patient diagnosis and treatment.

Keywords

References

  1. Nature. 2006 Dec 7;444(7120):756-60 [PMID: 17051156]
  2. Nat Rev Cancer. 2011 Jan;11(1):35-49 [PMID: 21179176]
  3. Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8699-704 [PMID: 15159543]
  4. Curr Biol. 2015 Jun 29;25(13):R538-42 [PMID: 26126276]
  5. Cancer Res. 2009 Dec 1;69(23):9065-72 [PMID: 19920198]
  6. Elife. 2015 May 08;4: [PMID: 25955966]
  7. Science. 2007 Feb 9;315(5813):848-53 [PMID: 17289997]
  8. Cancer Discov. 2016 May;6(5):532-45 [PMID: 27001151]
  9. Neuro Oncol. 2000 Jul;2(3):164-73 [PMID: 11302337]
  10. Curr Opin Cell Biol. 2006 Dec;18(6):658-67 [PMID: 17046232]
  11. Cancer Res. 2010 Jan 15;70(2):453-62 [PMID: 20068170]
  12. Nature. 2012 Aug 23;488(7412):522-6 [PMID: 22854781]
  13. Cell Rep. 2016 Nov 8;17(7):1755-1763 [PMID: 27829147]
  14. Semin Cancer Biol. 2018 Aug;51:50-58 [PMID: 29170066]
  15. Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19108-13 [PMID: 19855003]
  16. Cancer Cell. 2018 Apr 9;33(4):676-689.e3 [PMID: 29622463]
  17. Cancer Res. 2004 Sep 15;64(18):6503-10 [PMID: 15374961]
  18. Cancer Cell. 2010 Jan 19;17(1):98-110 [PMID: 20129251]
  19. Cancer Cell. 2007 Jan;11(1):25-36 [PMID: 17189716]
  20. Cancer Res. 2016 Sep 1;76(17):5143-50 [PMID: 27364552]
  21. Nature. 2013 Sep 19;501(7467):338-45 [PMID: 24048066]
  22. Cancer Cell. 2009 Aug 4;16(2):137-48 [PMID: 19647224]
  23. Mol Oncol. 2014 Sep 12;8(6):1095-111 [PMID: 25087573]
  24. Cancer Res. 2003 Sep 15;63(18):5821-8 [PMID: 14522905]
  25. Biochim Biophys Acta. 2014 Jan;1845(1):53-65 [PMID: 24316024]
  26. Genome Med. 2012 Oct 09;4(10):76 [PMID: 23046790]
  27. Cell. 2013 Nov 7;155(4):948-62 [PMID: 24183448]
  28. Nature. 2010 Nov 11;468(7321):321-5 [PMID: 20962780]
  29. Nature. 2004 Nov 18;432(7015):396-401 [PMID: 15549107]
  30. Science. 2008 Oct 31;322(5902):703-9 [PMID: 18974345]
  31. Lancet Oncol. 2009 May;10(5):459-66 [PMID: 19269895]
  32. Cell Stem Cell. 2009 Jun 5;4(6):568-80 [PMID: 19497285]
  33. Mol Syst Biol. 2012;8:608 [PMID: 22968442]
  34. BMC Bioinformatics. 2007 Nov 16;8:452 [PMID: 18021409]
  35. Science. 2014 Jun 20;344(6190):1396-401 [PMID: 24925914]
  36. Elife. 2014 Jul 29;3:e03023 [PMID: 25073701]
  37. Mol Cancer Ther. 2008 May;7(5):1013-24 [PMID: 18445660]
  38. Nat Rev Cancer. 2008 Oct;8(10):755-68 [PMID: 18784658]
  39. Genes Dev. 2008 Jul 1;22(13):1724-30 [PMID: 18593873]
  40. F1000Res. 2016 Aug 31;5:2122 [PMID: 27909575]
  41. Ann Transl Med. 2015 May;3(7):95 [PMID: 26015937]
  42. Cancer Epidemiol Biomarkers Prev. 2018 Jan;27(1):86-95 [PMID: 29141854]
  43. Cancer Res. 2011 Mar 1;71(5):1858-70 [PMID: 21363922]
  44. Clin Cancer Res. 2000 Jun;6(6):2562-72 [PMID: 10873113]
  45. Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12963-8 [PMID: 12297621]
  46. Cancer Res. 2003 Apr 1;63(7):1602-7 [PMID: 12670911]
  47. Methods. 2015 Sep 1;85:54-61 [PMID: 26142758]
  48. Lancet Neurol. 2005 Nov;4(11):760-70 [PMID: 16239183]
  49. Clin Cancer Res. 2011 Dec 15;17(24):7704-11 [PMID: 22184286]
  50. PLoS One. 2013;8(2):e57462 [PMID: 23468990]
  51. Med Oncol. 2017 Sep 26;34(11):182 [PMID: 28952134]
  52. PLoS One. 2011;6(9):e24807 [PMID: 21961046]
  53. Cancer Cell. 2006 Mar;9(3):157-73 [PMID: 16530701]
  54. Science. 2007 Aug 17;317(5840):916-24 [PMID: 17702937]
  55. Cancer Res. 2004 Oct 1;64(19):7011-21 [PMID: 15466194]
  56. Stem Cells Int. 2016;2016:1740936 [PMID: 27418931]
  57. Mol Cell Neurosci. 2008 Jun;38(2):245-58 [PMID: 18450476]
  58. Acta Neuropathol. 2016 Jun;131(6):803-20 [PMID: 27157931]
  59. Nature. 2013 Sep 19;501(7467):328-37 [PMID: 24048065]
  60. Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):E4134-41 [PMID: 24133140]

Grants

  1. DP2 CA239145/NCI NIH HHS
  2. R37 GM051542/NIGMS NIH HHS

MeSH Term

Cell Line, Tumor
Chromosomal Instability
Gene Expression Profiling
Glioblastoma
Humans
Neoplasm Grading
Neoplastic Stem Cells
Neural Stem Cells
Sequence Analysis, RNA
Single-Cell Analysis
Survival Analysis